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Composition of the Universe

stant, with the goal of solving the coincidence problems.
(See the Reference Frame article by Michael Turner on
page 10 of this issue.) 

The experimental physicist’s life, however, is domi-
nated by more prosaic questions: “Where could my meas-
urement be wrong, and how can I tell?” Crucial questions
of replicability were answered by the striking agreement
between our results and those of the competing team, but
there remain the all-important questions of systematic un-
certainties. Most of the two groups’ efforts have been de-
voted to hunting down these systematics.15,16 Could the
faintness of the supernovae be due to intervening dust?
The color measurements that would show color-dependent
dimming for most types of dust indicate that dust is not a
major factor.12,13 Might the type Ia supernovae have been
intrinsically fainter in the distant past? Spectral compar-
isons have, thus far, revealed no distinction between the
exploding atmospheres of nearby and more distant super-
novae.9,12

Another test of systematics is to look for even more
distant supernovae, from the time when the universe was
so much more dense that rm dominated over the dark en-
ergy and was thus still slowing the cosmic expansion. Su-
pernovae from that decelerating epoch should not get as
faint with increasing distance as they would if dust or in-
trinsic evolutionary changes caused the dimming. The first
few supernovae studied at redshifts beyond z = 1 have al-
ready begun to constrain these systematic uncertainties.17

(See PHYSICS TODAY, June 2001, page 17.) 
By confirming the flat geometry of the cosmos, the re-

cent measurements of the cosmic microwave background
have also contributed to confidence in the accelerating-uni-
verse results. Without the extra degree of freedom provided
by possible spatial curvature, one would have to invoke im-
probably large systematic error to negate the supernova re-
sults. And if we include the low rm estimates based on in-
ventory studies of galaxy clusters, the Wm–WL parameter
plane shows a reassuring overlap for the three independ-
ent kinds of cosmological observations (see figure 5).

Pursuing the elusive dark energy
The dark energy evinced by the accelerating cosmic ex-
pansion grants us almost no clues to its identity. Its tiny
density and its feeble interactions presumably preclude
identification in the laboratory. By construction, of course,
it does affect the expansion rate of the universe, and dif-
ferent dark-energy models imply different expansion rates
in different epochs. So we must hunt for the fingerprints
of dark energy in the fine details of the history of cosmic
expansion.

The wide-ranging theories of dark energy are often

characterized by their equation-of-state parameter
w ! p/r, the ratio of the dark energy’s pressure to its 
energy density. The deceleration (or acceleration) of an 
expanding universe, given by the general relativistic
equation

R!! /R = –4/3pGr(1 + 3w),

depends on this ratio. Here R, the linear scale factor of the
expanding universe, can be thought of as the mean dis-
tance between galaxy clusters not bound to each other.
Thus the expansion accelerates whenever w is more neg-
ative than –1/3, after one includes all matter, radiation,
and dark-energy components of the cosmic energy budget.

Each of the components has its own w: negligible for
nonrelativistic matter, +1/3 for radiation and relativistic
matter, and –1 for L. That is, L exerts a peculiar negative
pressure! General relativity also tells us that each compo-
nent’s energy density falls like R–3(1 + w) as the cosmos ex-
pands. Therefore, radiation’s contribution falls away first,
so that nonrelativistic matter and dark energy now pre-
dominate. Given that the dark-energy density is now about
twice the mass density, the only constraint on dark-energy
models is that w must, at present, be more negative than
–1/2 to make the cosmic expansion accelerate. However,
most dark-energy alternatives to a cosmological constant
have a w that changes over time. If we can learn more
about the history of cosmic expansion, we can hope to dis-
criminate among theories of dark energy by better deter-
mining w and its time dependence.

Unfortunately, the differences between the expansion
histories predicted by the current crop of dark-energy mod-
els are extremely small. Distinguishing among them will
require measurements an order of magnitude more accu-
rate than those shown in figure 3, and extending twice as
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Figure 5. In the cosmological parameter space of the nor-
malized mass and vacuum energy densities Wm and WL,

three independent sets of obervations—high-redshift super-
novae, galaxy cluster inventories, and the cosmic microwave

background, converge nicely near Wm = 0.3 and WL = 0.7.
The small yellow contour in this region indicates how well

we expect the proposed SNAP satellite experiment to further
narrow down the parameters. The inflationary expectation

constraint of a flat cosmos (Wm + WL = 1) is indicated by the
black diagonal. The red curve separates an eternally 

expanding cosmos from one that ends in a “Big Crunch.” 

s

Ωb ∼ 0.04

ΩCDM ∼ 0.26

ΩΛ ∼ 0.70
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Inflation
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ȧ
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Power spectrum of curvature perturbations

5.1.2 Flatness Problem Revisited

Recall the Friedmann Equation (41) for a non-flat universe

|1 � ⌦(a)| =
1

(aH)2
. (49)

If the comoving Hubble radius decreases this drives the universe toward flatness (rather than away

from it). This solves the flatness problem! The solution ⌦ = 1 is an attractor during inflation.

5.1.3 Horizon Problem Revisited

A decreasing comoving horizon means that large scales entering the present universe were inside the

horizon before inflation (see Figure 2). Causal physics before inflation therefore established spatial

homogeneity. With a period of inflation, the uniformity of the CMB is not a mystery.

‘comoving’

smooth patch

now end

Hubble length
start

Comoving 
 Horizon

Time [log(a)]

Inflation Hot Big Bang

Comoving Scales  

horizon exit horizon re-entry

density fluctuation

Figure 7: Left: Evolution of the comoving Hubble radius, (aH)�1, in the inflationary universe. The

comoving Hubble sphere shrinks during inflation and expands after inflation. Inflation is

therefore a mechanism to ‘zoom-in’ on a smooth sub-horizon patch. Right: Solution of

the horizon problem. All scales that are relevant to cosmological observations today were

larger than the Hubble radius until a ⇠ 10�5. However, at su�ciently early times, these

scales were smaller than the Hubble radius and therefore causally connected. Similarly,

the scales of cosmological interest came back within the Hubble radius at relatively recent

times.

5.2 Conditions for Inflation

Via the Friedmann Equations a shrinking comoving Hubble radius can be related to the acceleration

and the the pressure of the universe

d

dt

✓
H�1

a

◆
< 0 ) d2a

dt2
> 0 ) ⇢+ 3p < 0 . (50)

The three equivalent conditions for inflation therefore are:

27

(aH)�1

hRkRk�i super-horzionsub-horizon

Ṙ ⇡ 0

transfer
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CMB
recombination today

projection�T C�
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zero-point 
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Figure 17: Creation and evolution of perturbations in the inflationary universe. Fluctuations are

created quantum mechanically on subhorizon scales (see Lecture 2). While comoving

scales, k�1, remain constant the comoving Hubble radius during inflation, (aH)�1,

shrinks and the perturbations exit the horizon and freeze until horizon re-entry at late

times. After horizon re-entry the fluctuations evolve into anisotropies in the CMB

and perturbations in the LSS. This time-evolution has to be accounted for to relate

cosmological observations to the primordial perturbations laid down by inflation (see

Lecture 3).

Probe (WMAP) or the galaxy density inferred in a galaxy survey such as the Sloan Digital Sky

Survey (SDSS).

CMB anisotropies

The main result of §17 will be the following relation between the inflationary input spectra P (k) ⌘
{PR(k), Ph(k)} and the angular power spectra of CMB temperature fluctuations and polarization

CXY
` =

2

⇡

Z
k2dk P (k)| {z }

Inflation

�X`(k)�Y `(k)| {z }
Anisotropies

, (256)

where

�X`(k) =

Z ⌧0

0
d⌧ SX(k, ⌧)| {z }

Sources

PX`(k[⌧0 � ⌧ ])| {z }
Projection

. (257)

The labels X, Y refer to temperature T and polarization modes E and B (see §17). The integral

(256) relates the inhomogeneities predicted by inflation, P (k), to the anisotropies observed in the

CMB, CXY
` . The correlations between the di↵erent X and Y modes are related by the transfer

functions �X`(k) and �Y `(k). The transfer functions may be written as the line-of-sight integral

(257) which factorizes into physical source terms SX(k, ⌧) and geometric projection factors PX`(k[⌧0�
⌧ ]) (combinations of Bessel functions). A derivation of the source terms and the projection factors is

beyond the scope of this lecture, but may be found in Dodelson’s book [8]. An intuitive explanation

for these results may be found in the animations on Wayne Hu’s website [28].

Our interest in this lecture lies in experimental constraints on the primordial power spectra PR(k)

and Ph(k). To measure the primordial spectra the observed CMB anisotropies CXY
` need to be

69

Expansion of Hubble sphere Inflation

k�1

a

a / eHt H = ȧ/a

Radiation/Matter Dominated Eras 
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Pχ(k) = As
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k
k∗

)ns−1+ 1
2αs ln(k/k∗)+···

L. A. Anchordoqui (CUNY) Constraints on cosmological parameters Pheno 2014 4 / 15



Power spectrum of curvature perturbations

5.1.2 Flatness Problem Revisited

Recall the Friedmann Equation (41) for a non-flat universe

|1 � ⌦(a)| =
1

(aH)2
. (49)

If the comoving Hubble radius decreases this drives the universe toward flatness (rather than away

from it). This solves the flatness problem! The solution ⌦ = 1 is an attractor during inflation.

5.1.3 Horizon Problem Revisited

A decreasing comoving horizon means that large scales entering the present universe were inside the

horizon before inflation (see Figure 2). Causal physics before inflation therefore established spatial

homogeneity. With a period of inflation, the uniformity of the CMB is not a mystery.

‘comoving’

smooth patch

now end

Hubble length
start

Comoving 
 Horizon

Time [log(a)]

Inflation Hot Big Bang

Comoving Scales  

horizon exit horizon re-entry

density fluctuation

Figure 7: Left: Evolution of the comoving Hubble radius, (aH)�1, in the inflationary universe. The

comoving Hubble sphere shrinks during inflation and expands after inflation. Inflation is

therefore a mechanism to ‘zoom-in’ on a smooth sub-horizon patch. Right: Solution of

the horizon problem. All scales that are relevant to cosmological observations today were

larger than the Hubble radius until a ⇠ 10�5. However, at su�ciently early times, these

scales were smaller than the Hubble radius and therefore causally connected. Similarly,

the scales of cosmological interest came back within the Hubble radius at relatively recent

times.

5.2 Conditions for Inflation

Via the Friedmann Equations a shrinking comoving Hubble radius can be related to the acceleration

and the the pressure of the universe

d

dt

✓
H�1

a

◆
< 0 ) d2a

dt2
> 0 ) ⇢+ 3p < 0 . (50)

The three equivalent conditions for inflation therefore are:

27

(aH)�1

hRkRk�i super-horzionsub-horizon

Ṙ ⇡ 0

transfer
  function

CMB
recombination today

projection�T C�

horizon exit

time

comoving scales

horizon re-entry

zero-point 
  fluctuations

R̂k

Figure 17: Creation and evolution of perturbations in the inflationary universe. Fluctuations are

created quantum mechanically on subhorizon scales (see Lecture 2). While comoving

scales, k�1, remain constant the comoving Hubble radius during inflation, (aH)�1,

shrinks and the perturbations exit the horizon and freeze until horizon re-entry at late

times. After horizon re-entry the fluctuations evolve into anisotropies in the CMB

and perturbations in the LSS. This time-evolution has to be accounted for to relate

cosmological observations to the primordial perturbations laid down by inflation (see

Lecture 3).

Probe (WMAP) or the galaxy density inferred in a galaxy survey such as the Sloan Digital Sky

Survey (SDSS).

CMB anisotropies

The main result of §17 will be the following relation between the inflationary input spectra P (k) ⌘
{PR(k), Ph(k)} and the angular power spectra of CMB temperature fluctuations and polarization

CXY
` =

2

⇡

Z
k2dk P (k)| {z }

Inflation

�X`(k)�Y `(k)| {z }
Anisotropies

, (256)

where

�X`(k) =

Z ⌧0

0
d⌧ SX(k, ⌧)| {z }

Sources

PX`(k[⌧0 � ⌧ ])| {z }
Projection

. (257)

The labels X, Y refer to temperature T and polarization modes E and B (see §17). The integral

(256) relates the inhomogeneities predicted by inflation, P (k), to the anisotropies observed in the

CMB, CXY
` . The correlations between the di↵erent X and Y modes are related by the transfer

functions �X`(k) and �Y `(k). The transfer functions may be written as the line-of-sight integral

(257) which factorizes into physical source terms SX(k, ⌧) and geometric projection factors PX`(k[⌧0�
⌧ ]) (combinations of Bessel functions). A derivation of the source terms and the projection factors is

beyond the scope of this lecture, but may be found in Dodelson’s book [8]. An intuitive explanation

for these results may be found in the animations on Wayne Hu’s website [28].

Our interest in this lecture lies in experimental constraints on the primordial power spectra PR(k)

and Ph(k). To measure the primordial spectra the observed CMB anisotropies CXY
` need to be

69

Expansion of Hubble sphere Inflation

k�1

a

a / eHt H = ȧ/a
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Baseline ΛCDM model

Spatially-flat 6-parameter model + {Ωbh2, ΩCDBh2, Θs, τ, ns, As}

Ωb = 0.02207± 0.00033 baryon density

ΩCDMh2 = 0.1196± 0.0031 cold dark matter density

Θs = (1.04132± 0.00068)× 10−2 angular size of sound horizon at recombination

τ = 0.097± 0.038 Thomson scattering optical depth due to reionization

ns = 0.9616± 0.0094 scalar spectral index

ln(1010 As) = 3.103± 0.072 power spectrum of curvature perturbations

Indirect constraints + h = 0.674± 0.012 and ΩΛ = 0.686± 0.020
are highly model dependent

Hubble Space Telescope + h = 0.738± 0.024
more than 2σ away from Planck result

H0 = 100 h km s−1 Mpc−1
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Power spectrum of tensor perturbations

B-mode power spectrum,

Ph = At

(
k
k∗

)nt +
1
2αt ln

(
k

k∗

)
+···

Define tensor-to-scalar amplitude ratio

r =
At

As

Planck temperature map

r < 0.11 @ 95%CL

WMAP temperature map

r < 0.13 @ 95%CL

Planck Collaboration, arXiv:1303.5082
WMAP Collaboration, arXiv:1212.5226
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68% and 95% confidence regions for 7-parameter fit

0.94 0.96 0.98 1.

0.1

0.2

0.3

0.4

Scalar Spectrum Spectral Index HnsL

T
en

so
r-

to
-

Sc
al

ar
R

at
io

Hr
L

Planck Collaboration, arXiv:1303.5082
BICEP2 Collaboration, arXiv:1403.3985

L. A. Anchordoqui (CUNY) Constraints on cosmological parameters Pheno 2014 7 / 15



68% and 95% confidence regions for 7-parameter fit

0.94 0.96 0.98 1.

0.1

0.2

0.3

0.4

Scalar Spectrum Spectral Index HnsL

T
en

so
r-

to
-

Sc
al

ar
R

at
io

Hr
L

Planck Collaboration, arXiv:1303.5082
BICEP2 Collaboration, arXiv:1403.3985

L. A. Anchordoqui (CUNY) Constraints on cosmological parameters Pheno 2014 7 / 15



68% and 95% confidence regions for 7-parameter fit

0.94 0.96 0.98 1.

0.1

0.2

0.3

0.4

Scalar Spectrum Spectral Index HnsL

T
en

so
r-

to
-

Sc
al

ar
R

at
io

Hr
L

Planck Collaboration, arXiv:1303.5082
BICEP2 Collaboration, arXiv:1403.3985

L. A. Anchordoqui (CUNY) Constraints on cosmological parameters Pheno 2014 7 / 15



Inflation, slow-roll, and all that...

Slow-roll inflation is essentially based in two parameters

ε =
M2

Pl

16π

(
V ′

V

)2

and η =
M2

Pl

8π

∣∣∣∣∣∣V ′′

V
−

1

2

(
V ′

V

)2
∣∣∣∣∣∣

Amplitudes are related to ε, η and V by

As =
8V

3M4
Plε

[
1− (4C + 1)ε +

(
2C −

2

3

)
η

]
and At =

128V

3M4
Pl

[
1−

(
2C +

5

3

)
ε

]

Spectral indices and their running to O(ε2) are

ns ' 1− 4ε + 2η +

( 10

3
+ 4C

)
εη − (6 + 4C)ε2 +

2

3
η

2 −
2

3
(3C − 1)

(
2ε2 − 6εη + ξ

2
)

nt ' −2ε +

( 8

3
+ 4C

)
εη −

2

3
(7 + 6C)ε2

αs ≡
dns

d ln k
' −8ε2 + 16εη − 2ξ2

αt ≡
dnt

d ln k
' −4ε(ε− η)

with C = γE + ln 2− 2 ≈ −0.7296 ξ
2 ≡ (M4

PlV
′V ′′′)/(64π2V 2) k∗ = 0.002 Mpc−1
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S-dual Inflation

Hypothesize potential be invariant to the S-duality constraint

g → 1/g or φ→ −φ

φ ≡ dilaton/inflaton + g ∼ eφ/M

S-duality forces functional form on potential

V (φ) = f [cosh(φ/M)]

Two illustrative examples

V = V0 sech(φ/M)

V = V0

[
sech(3φ/M)− 1

4
sech2(φ/M)

]
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Parameter space available to S-dual potentials
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Running spectral index

Planck + BICEP2 data favor αs < 0 @ 3σ

BICEP2 best fit + αs = −0.028± 0.009 (68%CL)

slow-roll + αs ∼ O(ε2)
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9-parameter fit {Ωbh2,ΩCDBh2,Θs, τ, ns, As,Neff,
∑

mν}
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h = 0.72± 0.01 Neff = 3.86± 0.25
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Comparison of H0 and Neff measurements (with 1σ errors)
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Take home message

Combining observations of CMB with data from BAO
Planck Collaboration reported

h = 0.674± 0.012 and Neff = 3.30± 0.27

However + if the value of h is not allowed to float in the fit
but instead is frozen to HST value h = 0.738± 0.024
Planck CMB data then gives Neff = 3.62± 0.25
suggesting new neutrino-like physics (at around 2.3σ level)

BICEP2 + Planck data favor

h = 0.72± 0.01 and Neff = 3.86± 0.25

More CMB data is needed to resolve this issue

Alteratively + we may be lucky
and data from LHC14 could provide definite answer
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Confronting neutrino cosmology with LHC data

Consider right-handed partners of 3 (left-handed) SM neutrinos
For decoupling in quark-hadron crossover transition

3 νR generate ∆NνR = 3
(

TνR
TνL

)4
< 3 extra r.d.o.f. @ BBN & CMB

Consistency with present constraints on Neff permits us to identify
allowed parameter space of Z ′ masses and couplings
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