Simplified Models of Mixed Dark Matter

David Sanford

Caltech

Pheno 2014 University of Pittsburgh – Monday, May 5, 2014

Work with C. Cheung (JCAP02(2014)011 [hep-ph/1311.5896])

Complementarity for Dark Matter Searches

Theory input is required to compare the results of dark matter searches

A spectrum of approaches exists between complete models and effective theories

Candidates within larger BSM models

- Complete description of UV physics
- Unambiguous mapping between searches
- Restrictive frameworks often limiting

Effective theory provides general results

- Clear mapping between search strategies
- Concise examination of many theories
- Description suffers in collider searches

Simplifed models can bridge the gap between BSM frameworks and effective theory

Why Use Simplified Models?

Motivation is analogous to simplified models for collider searches

 In larger BSM theories dark matter dynamics are often defined by a small sub-set of parameters

Single interactions are often enough for searches

- Direct detection is often dominated by one interaction
- One interaction typically gives conservative bounds for indirect and collider searches

Thermal constraint requires all relevant interactions

- Theories reducing to a single effective operator are somewhat contrived
- Thermal production remains the strongest motivator for significant coupling to the SM

Direct Detection and Higgs Interactions

Simplified models producing DM-Higgs interactions are particularly important!

- Standard lore: direct detection is reaching the parameter space for neutralino scattering
- Sensitivity is strong for a much larger class of models where dark matter scatters through Higgs interactions

The strength of current and near-future direct detection experiments allows for exploration of DM interacting through the Higgs without requiring a full BSM framework!

Singlet and Minimal Dark Matter

A singlet with a Higgs portal is perhaps the simplest DM model

Silveira and Zee (1985), McDonald (1994)

- Relic density achieved through Higgs-mediated annihilation and annihilation to Higgs
 - Annihilation to $q\bar{q}$, $b\bar{b}$, $t\bar{t}$, WW, ZZ, HH
- Relic density maps directly to direct detection cross-section
- Within XENON1T sensitivity for $M_S \lesssim 10$ TeV

J. M. Cline, K. Kainulainen, P. Scott, and C. Weniger (2013)

Minimal dark matter annihilates through $\mathrm{SU}(2) \times \mathrm{U}(1)$ interactions

- Thermal relic only at a particular mass depending on representation and spin
- Direct detection prospects are generally weak

Simplified models with more freedom are desireable

Mixed Dark Matter

Mixed $DM \equiv Dark$ matter composed of neutral components from multiple representations

Still only one dark matter particle

We are most interested in mixtures of states with different SU(2) representations

- Mixing requires Higgs vev insertions
- Produces a Higgs coupling

 $c_{h\chi\chi}h\chi\chi$ (fermion) $a_{h\chi\chi}h\chi\chi$ (scalar)

 Generalization of "bino-Higgsino" mixing in the MSSM but with arbitrary representation, spin, and Higgs couplings

Will consider three models

Singlet-Doublet Fermion Singlet-Doublet Scalar Singlet-Triplet Scalar

Singlet-Doublet Fermion

Generalization of "bino-Higgsino" mixing in the MSSM or "singlino-Higgsino" mixing in the NMSSM

Cohen, Kearney, Pierce, Tucker-Smith (2012)

 Yukawa terms are no longer tied to gauge couplings or Higgs potential

Field	Charges	Spin
S	(1,0)	1/2
<i>D</i> ₁	(2 , -1/2)	1/2
<i>D</i> ₂	(2 , 1/2)	1/2

- Requires two doublets
 - Provides a doublet mass term
 - Eliminates anomalies

$$-\mathcal{L} = \frac{1}{2}M_{S}S^{2} + M_{D}D_{1}D_{2} + y_{D_{1}}SHD_{1} + y_{D_{2}}SH^{\dagger}D_{2} + h.c.$$

A polar representation makes formulation simpler

$$y_{D_1} = y\cos\theta \qquad \qquad y_{D_2} = y\sin\theta$$

• $y \approx g'/\sqrt{2}$ for bino-Higgsino; $y = \lambda$ for singlino-Higgsino

Relic Density and Direct Detection

No abundance re-scaling away from the thermal line

- Strong bounds on thermal region from LUX
- Exceptional reach for XENON1T
- Regions with vanishing cross-section exist

Fixing the Relic Density

In WIMP models, the most interesting region is the $\Omega_{\chi} = \Omega_{DM}$ slice of parameter space

- Provides an explanation for all of dark matter without needing further candidates or high-scale physics
- Correlation often exist between early annihilation and current searches
 - Mixing produces both annihilation and a Higgs coupling for mixed DM

Direct detection has strong sensitivity to σ^{SI}

... but two classes of thermal models exhibit $\sigma^{SI}
ightarrow 0$

- ► Well-tempered models can exhibit significant mixing for $y \rightarrow 0$ if $|M_S M_D| \rightarrow 0$
- A *blind spot* exists for spin-independent searches if $M_{\chi} + M_D \sin 2\theta = 0$

Summary of Singlet-Doublet Fermion

Allowed regions for singlet-doublet fermion

- survive LUX
- For tan θ < 0 blind-spots occur, but require significant fine-tuning after XENON1T

Other Mixed Dark Matter Models

Allowed region for scalar mixed DM models

- Most of the singlet-doublet scalar model space lies within XENON1T sensitivity
- Significant regions of singlet-triplet scalar model space lies beyond XENON1T sensitivity

Conclusion

- Simplified models are valuable for dark matter searches, particularly when considering the relic density
- Higgs-mediated models are particularly relevant for direct detection
- Mixing of multiple SU(2) × U(1) states implies a Higgs coupling
- The bulk of singlet-doublet models (both fermion and scalar) are within future sensitivity, while many singlet-triplet models lie beyond XENON1T reach
- Many possible future directions
 - Spin-dependent constraints
 - Indirect detection constraints
 - $\Gamma(h \rightarrow \text{invis.})$ and other precision constraints
 - Consider non-perturbativity bounds
 - Examine stability bounds for scalar models
 - Examine mixing of higher dimensional representations
 - Allow for non-renormalizable operators (singlet-quadruplet, singlet-quintuplet, etc.)
 - Compare with collider constraints