Dark Matter Thermalization in Neutron Stars

Bridget Bertoni

PRD 88, 123505 with Ann Nelson and Sanjay Reddy

University of Washington

bbertoni@uw.edu

May 5, 2014

Dark Matter (DM)

- know a few things: not too hot, $\Omega_{DM} \approx 0.26$, interacts gravitationally and very weakly (if at all) via other forces
- many searches: direct detection, indirect detection, collider

Use neutron stars to further constrain DM:

10 billion year old neutron stars \Rightarrow DM parameters that allow for this scenario in less than 10 billion years are ruled out

Dark Matter (DM)

- know a few things: not too hot, $\Omega_{DM} \approx 0.26$, interacts gravitationally and very weakly (if at all) via other forces
- many searches: direct detection, indirect detection, collider

Use neutron stars to further constrain DM:

10 billion year old neutron stars \Rightarrow DM parameters that allow for this scenario in less than 10 billion years are ruled out Low energy/momentum exchange collisions contribute most to the DM thermalization time Previous calculations^{*} assumed that DM interacts with neutrons and that neutron stars are made up of non-interacting neutrons, and then constrained $\sigma_{\chi n}(m_{\chi})$.

We expand on these calculations by including

- more rigorous Pauli blocking and kinematics
- electron scattering
- interactions: superfluidity and superconductivity

*e.g. hep-ph/1103.5472, astro-ph/1104.0382, hep-ph/1301.6811, hep-ph/1301.0036

Previous calculations^{*} assumed that DM interacts with neutrons and that neutron stars are made up of non-interacting neutrons, and then constrained $\sigma_{\chi n}(m_{\chi})$.

We expand on these calculations by including

- more rigorous Pauli blocking and kinematics
- electron scattering
- interactions: superfluidity and superconductivity

We consider complex scalar DM which couples to regular matter via some heavy, vector boson:

$$\mathcal{L}_{int} = rac{1}{M^2} \ell_{\mu} \left(g_V j_V^{\mu} + g_A j_A^{\mu}
ight)$$

$$\ell_\mu = \partial_\mu \chi^\dagger \chi - \chi^\dagger \partial_\mu \chi$$
 , $j_V^\mu = ar \psi \gamma^\mu \psi$, and $j_A^\mu = ar \psi \gamma^\mu \gamma_5 \psi$

*e.g. hep-ph/1103.5472, astro-ph/1104.0382, hep-ph/1301.6811, hep-ph/1301.0036

Bridget Bertoni (UW)

The thermalization time τ is the average time it takes for an incident DM particle to start having collisions which have an energy transfer less than the temperature ($\langle q_0 \rangle \lesssim T$)

 $au = ext{time for } 1^{ ext{st}} ext{ collision} + ext{time for } 2^{ ext{nd}} ext{ collision} + \dots$

The time for each DM collision with a (non-interacting) fermion i is

$$\begin{split} \Gamma^{-1} &= \left(2\int \frac{d^3p}{(2\pi)^3} \int \frac{d^3k'}{(2\pi)^3 2E_{k'}} \int \frac{d^3p'}{(2\pi)^3 2E_{p'}} (2\pi)^4 \delta^4(p^\mu + k^\mu - p'^\mu - k'^\mu) \right. \\ & \left. \times \frac{\langle |\mathcal{M}|^2 \rangle}{2E_p 2E_k} n_F(E_p) \left(1 - n_F(E_{p'})\right) \left(1 + n_B(E_{k'})\right) \right)^{-1} \end{split}$$

 $au \geq$ 10 billion years \Rightarrow maximum DM scattering cross section

Three cases:

- degenerate Fermi gas of neutrons
- Superfluid neutrons (and electrons and protons)
- olor superconducting (CSC) quark matter

DM thermalization with a degen., Fermi gas of neutrons

• Pauli Blocking (decreases the number of neutrons that can interact)

• Kinematics (limits the kinds of collisions that occur)

• e.g. for a low momentum collision, $q_0 < v_i q$

DM thermalization with a degen., Fermi gas of neutrons

• Pauli Blocking (decreases the number of neutrons that can interact)

• Kinematics (limits the kinds of collisions that occur)

• e.g. for a low momentum collision, $q_0 < v_i q$

Previous calculations included an estimate of Pauli blocking and had no kinematical phase space constraints.

Bridget Bertoni (UW)

Pheno 2014

DM thermalization with a degen., Fermi gas of neutrons

DM thermalization with superfluid neutrons

- At low T, neutrons form Cooper pairs that condense
- End result is paired neutrons and a superfluid phonon (GB)
- Need high energy/momentum to interact with paired neutrons
- Dominant way for low energy DM to scatter is by radiating phonons
 - Only kinematically allowed when $v_{\chi} > c_s \Rightarrow$ no DM thermalization

DM thermalization with superfluid neutrons

- At low T, neutrons form Cooper pairs that condense
- End result is paired neutrons and a superfluid phonon (GB)
- Need high energy/momentum to interact with paired neutrons
- Dominant way for low energy DM to scatter is by radiating phonons
 - Only kinematically allowed when $v_{\chi} > c_s \Rightarrow$ no DM thermalization

Summary of Results

Including rigorous kinematics resulted in DM thermalization times that were quantitatively and qualitatively different from past results.

Previously neglected DM-electron scattering is important—it's the only relevant DM thermalization mechanism when the neutrons form a superfluid and the protons form a superconductor.

Exotic neutron star cores with CSC quark matter give rise to very large thermalization times \Rightarrow this could prevent black hole formation and if DM is discovered, could explain why neutron stars get so old.