Nuclear corrections to Vector Boson production at the LHC

D. Benjamin Clark Fred Olness

Southern Methodist University (Dallas,TX)

Phenomenology Symposium Pittsburgh, PA

6 May 2014

Vector Boson Production

- High Energy proton-proton collisions at the LHC are capable of producing many electroweak bosons (W/Z) at high rapidity.
- Properties of these bosons are well constrained making them ideal "standard candle" measurements for detector calibration.
- The hadronic cross section for Drell-Yan pair production is written

$$\frac{d\sigma}{dQ^2 dy} = \sum_{a,b} \int_0^1 d\xi_1 \int_0^1 d\xi_2 \frac{d\hat{\sigma}}{dQ^2 dy} f_{a/A}(\xi_1) f_{b/B}(\xi_2)$$

At LO we can make the approximation,

$$\xi_1 pprox x_1 \equiv au e^y,$$
 $\xi_2 pprox x_2 \equiv au e^{-y},$ where

Vector Boson Production

■ This means that rapidity measurements for on-shell vector boson production provide a method for probing the x dependence of the PDFs.

ATLAS measurement

(ATLAS Collaboration, PRL 110,022301 92013))

- In January of 2013, ATLAS released the results of their Z boson rapidity distribution for Pb-Pb collisions at 2.76TeV.
- ATLAS observed 1995 candidate events corresponding to 0.15nb⁻¹ of integrated Luminosity.

ATLAS measurement

(ATLAS Collaboration, ATLAS-CONF-2013-106)

- In November of 2013, ATLAS released the result of their μ^+ and $\mu^$ rapidity measurements.
- All of the heavy ion runs have been compared to predictions made with NLO PDFs.

Nuclear Modifications

- Nuclear PDFs (nPDFs) can show significant modifications to the free proton PDFs.
- DIS data suggest several types of corrections:
 - Shadowing x < 0.05 - 0.1
 - Anti-shadowing $0.1 \le x \le 0.3$
 - ► EMC effect 0.3 < x < 0.8
 - Fermi motion x > 0.8

Nuclear Modifications

- The nuclear modifications are present in the PDFs and vary with A as well as x and Q.
- We expect modifications to any hadronic observable involving heavy nuclei.

nCTEQ PDFs

 The nCTEQ proton PDFs are parameterized according to the following prescription;

$$\begin{array}{rcl} x\,f_k(x,Q_0) & = & c_0x^{c_1}(1-x)^{c_2}e^{c_3x}(1+e^{c_4}x)^{c_5} \\ k & = & u_v,d_v,g,\bar{u}+\bar{d},s,\bar{s}\;, \\ \bar{d}(x,Q_0)/\bar{u}(x,Q_0) & = & c_0x^{c_1}(1-x)^{c_2}+(1+c_3x)(1-x)^{c_4} \end{array}$$

The nuclear A dependence is then applied to the coefficients in the parameterization.

$$c_k \to c_k(A) \equiv c_{k,0} + c_{k,1} (1 - A^{-c_{k,2}}), \quad k = \{1, \ldots, 5\}$$

(Schienbein et. al. arXiv:0907.2357v2)

nCTEQ PDFs

■ The nCTEQ group has produced a several sets of nuclear nPDFs at NLO for public distribution.

(Schienbein et. al. arXiv:0907.2357v2)
(Stavreva et. al. arXiv:1012.1178)

- These PDF sets are scaled down to the proton.
- The PDF for a general nucleus can be constructed as a linear combination of the PDFs,

$$f_i^{(A,Z)}(x,Q) = \frac{Z}{A} f_i^{p/A}(x,Q) + \frac{(A-Z)}{A} f_i^{n/A}(x,Q)$$

(Schienbein et. al. arXiv:0907.2357v2)

Hessian error sets for the nPDFs are provided for the parameters of the nuclear correction.

D. B. Clark (SMU) W/Z in Pb-Pb 6 May 2014

nCTEQ Errors vs CT10 Errors

- Error sets have been created for the nCTEQ PDFs by Aleksander Kusina and Fred Olness.
- The error sets are over 17 eigenvectors. Each family contains 35 PDF sets.

LO Rapidity Calculation

■ A LO calculation of rapidity shows shape changes due to the softening of the u(x, Q) and $\bar{d}(x, Q)$ PDFs.

Pb-Pb vs. p-p rapidity

There is an observable shape change for on-shell W^+ production. The difference is up to 20 % in some regions of parameter space.

■ These differences should be seen with a higher integrated luminosity for Pb-Pb collisions.

PDF Comparison

■ The nCTEQ proton PDF set gives similar predictions to other commonly used sets.

Pb-Pb vs. p-p rapidity

No shape change for on-shell Z and W^- rapidity is found as we move from the proton PDFs to Lead.

The shapes of the lepton distributions for these bosons are also indistinguishable.

PDF Correlations (Preliminary)

- In the high absolute rapidity region, the error is dominated by the uncertainty on the down PDF.
- In the central region, the \bar{u} and \bar{d} uncertainty provides the largest contribution but there is also a significant gluon contribution.
- Gluon data at low x values is needed to constrain the nCTEQ g(x, Q) distribution.

Conclusions

- Nuclear modifications to the W^+ rapidity distributions may be observable in future heavy ion measurements at the LHC.
- W^- and Z boson production in Pb Pb collisions does not show significant modifications to the predictions made with proton PDFs.
- At low x in the central rapidity region, there is a large contribution due to the gluon PDF.
- Inclusion of these measurements in future PDF fits will help to constrain the gluon, as well as other poorly constrained PDFs.

Backup Slides

Constraints on PDFs

■ The inclusion of LHC data from heavy ion collisions will help to further constrain the nPDFs.

CTEQ PDF Comparison

decut3 Comparison

decut3 Comparison

PDF Comparison

■ The nuclear PDFs are not as well constrained as the proton fits.

Transverse Momentum

■ The transverse momenta of the lead and proton predictions are very similar.