▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

LHC search for di-Higgs decays of stoponium and other scalar resonances in events with two photons and two bottom jets

Nilanjana Kumar Northern Illinois University

Phenomenology 2014 Syposium University of Pittsburgh Pittsburgh, May 6, 2014

Work done with Stephen P. Martin, arXiv:1404.0996

Event Selection

Discovery Prospects

Presentation Outline

Motivations

Event Generation and Simulation

Event Selection

Discovery Prospects

Event Selection

Discovery Prospects

▲ロト ▲母 ト ▲ ヨ ト ▲ ヨ - めんぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Motivations

Discovery of SM Higgs, Study of BSM by looking for new heavy particles(η) decay into h.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Motivations

- Discovery of SM Higgs, Study of BSM by looking for new heavy particles(η) decay into h.
- A light stop(\tilde{t}_1) scenario, "stop" = lightest top squark = spin-0 superpartner of top quark.

Motivations

- Discovery of SM Higgs, Study of BSM by looking for new heavy particles(η) decay into h.
- A light stop(*t*₁) scenario,
 "stop" = lightest top squark = spin-0 superpartner of top quark.
- Motivated by weak-scale baryogenesis, naturalness and abundence of thermal relic density.

Motivations

- Discovery of SM Higgs, Study of BSM by looking for new heavy particles(η) decay into h.
- A light stop(*t*₁) scenario,
 "stop" = lightest top squark = spin-0 superpartner of top quark.
- Motivated by weak-scale baryogenesis, naturalness and abundence of thermal relic density.
- Stoponium (η_{t̃}), a bound state of stop-antistop.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Stoponium

• Stoponium $(\eta_{\tilde{t}})$, a bound state of stop-antistop possible if

 $m_{ ilde{t}_1} < m_{ ilde{N}_1} + m_t$, $m_{ ilde{t}_1} < m_{ ilde{C}_1} + 5 \; {
m GeV}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Stoponium

• Stoponium $(\eta_{\tilde{t}})$, a bound state of stop-antistop possible if

 $m_{ ilde{t}_1} < m_{ ilde{N}_1} + m_t$, $m_{ ilde{t}_1} < m_{ ilde{C}_1} + 5~{
m GeV}$

• Binding energy of order few GeV.

Stoponium

• Stoponium $(\eta_{\tilde{t}})$, a bound state of stop-antistop possible if

 $m_{ ilde{t}_1} < m_{ ilde{N}_1} + m_t$, $m_{ ilde{t}_1} < m_{ ilde{C}_1} + 5~{
m GeV}$

- Binding energy of order few GeV.
- Decays dominantly by stop-antistop annihilation: $\eta_{\tilde{t}} \rightarrow gg, WW, ZZ, hh, \gamma\gamma, t\bar{t}, \ldots$

Stoponium

• Stoponium $(\eta_{\tilde{t}})$, a bound state of stop-antistop possible if

 $m_{ ilde{t}_1} < m_{ ilde{N}_1} + m_t$, $m_{ ilde{t}_1} < m_{ ilde{C}_1} + 5~{
m GeV}$

- Binding energy of order few GeV.
- Decays dominantly by stop-antistop annihilation: $\eta_{\tilde{t}} \rightarrow gg, WW, ZZ, hh, \gamma\gamma, t\bar{t}, \ldots$
- Very narrow decay width (\approx few MeV), potentially observable.

Stoponium

• Stoponium $(\eta_{\tilde{t}})$, a bound state of stop-antistop possible if

 $m_{ ilde{t}_1} < m_{ ilde{\mathcal{N}}_1} + m_t$, $m_{ ilde{t}_1} < m_{ ilde{\mathcal{C}}_1} + 5~ ext{GeV}$

- Binding energy of order few GeV.
- Decays dominantly by stop-antistop annihilation: $\eta_{\tilde{t}} \rightarrow gg, WW, ZZ, hh, \gamma\gamma, t\bar{t}, \ldots$
- Very narrow decay width (\approx few MeV), potentially observable.
- Can look for invariant mass peaks! (very rare for SUSY)

 $pp \rightarrow \eta_{\tilde{t}} \rightarrow hh$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

Light Stop Search

Stoponium Production Cross section: $pp \rightarrow \eta_{\tilde{t}}$

arxiv 0912.4813 J.E. Younkin, S.P. Martin, arxiv 1401.1284 Kim, Idlibi, Mehen, Yoon, Hagiwara et al 1990

- Calculation is NLO, 1S+2S stoponium production.
- Significant uncertainty from stoponium wavefunction at origin R(0).
- Higher excited states may also contribute, depending on decay modes.

・ロト ・ 日 ・ モ ト ・ 田 ・ うへぐ

Search for stoponium in di-Higgs mode

Originally proposed by Barger and Keung PLB211, 355, 1988.

A good di-Higgs signal:

- Results applicable to any di-Higgs resonance, including $H \rightarrow hh$ in SUSY with low tan β . (Baur, Plehn, Rainwater 0310056; Liu, Wang, Zhu 1310.3634; Chen, Du, Fang, Lu 1312.7212).
- ATLAS search for resonant $\eta \rightarrow hh \rightarrow b\overline{b}b\overline{b}$, ATLAS-CONF-2014-005.
- CMS search for resonant $\eta \rightarrow hh \rightarrow b\overline{b}\gamma\gamma$, CMS PAS HIG-13-032.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Presentation Outline

Motivations

Event Generation and Simulation

Event Selection

Discovery Prospects

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Event Generation and Simulation

• Madgraph 5 to generate events, in p-p collisions at $\sqrt{s} = 14$ TeV.

- Madgraph 5 to generate events, in p-p collisions at $\sqrt{s} = 14$ TeV.
- Modified HEFT to include a small ηhh coupling to allow the decay.

- Madgraph 5 to generate events, in p-p collisions at $\sqrt{s} = 14$ TeV.
- Modified HEFT to include a small ηhh coupling to allow the decay.
- $m_h = 126 \text{ GeV}, \text{ BR}(h \rightarrow b\overline{b}) = 0.57, \text{ BR}(h \rightarrow \gamma \gamma) = 0.0022.$

- Madgraph 5 to generate events, in p-p collisions at $\sqrt{s} = 14$ TeV.
- Modified HEFT to include a small ηhh coupling to allow the decay.
- $m_h = 126 \text{ GeV}, \text{ BR}(h \rightarrow b\overline{b}) = 0.57, \text{ BR}(h \rightarrow \gamma \gamma) = 0.0022.$
- Generated 10^5 events for each of 19 values of m_{η} , ranging from 275 GeV to 1000 GeV.

- Madgraph 5 to generate events, in p-p collisions at $\sqrt{s} = 14$ TeV.
- Modified HEFT to include a small ηhh coupling to allow the decay.
- $m_h = 126 \text{ GeV}, \text{ BR}(h \rightarrow b\overline{b}) = 0.57, \text{ BR}(h \rightarrow \gamma \gamma) = 0.0022.$
- Generated 10^5 events for each of 19 values of m_{η} , ranging from 275 GeV to 1000 GeV.
- Pythia for parton showering, Delphes 3 for detector simulation.

- Madgraph 5 to generate events, in p-p collisions at $\sqrt{s} = 14$ TeV.
- Modified HEFT to include a small ηhh coupling to allow the decay.
- $m_h = 126 \text{ GeV}$, $\text{BR}(h \rightarrow b\overline{b}) = 0.57$, $\text{BR}(h \rightarrow \gamma\gamma) = 0.0022$.
- Generated 10^5 events for each of 19 values of m_{η} , ranging from 275 GeV to 1000 GeV.
- Pythia for parton showering, Delphes 3 for detector simulation.
- *b*-tagging efficiency for *b*-jets = 0.6 charm = 0.1 and *u*, *d*, *s* = 0.001

Event Selection

Discovery Prospects

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Presentation Outline

Motivations

Event Generation and Simulation

Event Selection

Discovery Prospects

Event Selection

Discovery Prospects

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Event Selection

Event Selection **S1**:

- $p_T(b_1, b_2) > (40, 30)$ GeV
- $p_T(\gamma_1, \gamma_2) > (20, 15)$ GeV
- $|\eta(b_1, b_2)| < 2.7$
- $|\eta(\gamma_1, \gamma_2)| < 2.5$
- $\Delta R_{ij} > 0.5$, for $i, j = b_1, b_2, \gamma_1, \gamma_2$

A cut on Resonance Invariant Mass

- Distributions of $M_{bb\gamma\gamma}$ and M_X for $m_\eta = 275$ GeV and 500 GeV.
- Most of the events are within about $\pm 7\%$ of m_{η} .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Modified invariant mass,

 $M_X \equiv M_{bb\gamma\gamma} - M_{bb} + m_h$

It mitigates the effects of *b*-jet momentum mismeasurements.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Event Selection

The sequence of event selection cuts we used is:

S2: As in **S1**, with $|M_{\gamma\gamma} - m_h| < 6$ GeV,

S3: As in **S2**, with $|M_{bb} - m_h| < 30$ GeV,

S4: As in **S3**, with $|M_X - m_\eta| < 0.07 m_\eta$, where m_η is the position of the putative peak.

Backgrounds

- non-resonant $\gamma\gamma b\overline{b}$ production
- γγcc
- $\gamma\gamma qc/q\overline{c}$ (where q = u, d, s)
- $\gamma\gamma q\overline{q}$
- $\gamma\gamma t\overline{t}$
- $\gamma\gamma bq$

Zh

bbh

hh

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Backgrounds

- non-resonant $\gamma\gamma b\overline{b}$ production
- *γγc c*
- $\gamma\gamma qc/q\overline{c}$ (where q=u,d,s)
- $\gamma\gamma q\overline{q}$
- $\gamma\gamma t\overline{t}$
- $\gamma\gamma bq$

tīth
Zh
bībh

• $\gamma\gamma Z$

• hh

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 4-jet background(jjjj) is not included because efficiencies for jets faking photons is quite low, and distributed at low photon p_T and invariant masses.

Backgrounds

- non-resonant $\gamma\gamma b\overline{b}$ production
- *γγc c*
- $\gamma\gamma qc/q\overline{c}$ (where q = u, d, s)
- $\gamma\gamma q\overline{q}$
- $\gamma\gamma t\overline{t}$
- $\gamma\gamma bq$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 4-jet background(jjjj) is not included because efficiencies for jets faking photons is quite low, and distributed at low photon p_T and invariant masses.
- Generator-level cut on the diphoton pair (106 < $M_{\gamma\gamma}$ < 146) in Backgrounds that include $\gamma\gamma$.

Backgrounds

- non-resonant $\gamma\gamma b\overline{b}$ production
- *γγc c*
- $\gamma\gamma qc/q\overline{c}$ (where q=u,d,s)
- $\gamma\gamma q\overline{q}$
- $\gamma\gamma t\overline{t}$
- $\gamma\gamma bq$

tth
Zh
bbh

• $\gamma\gamma Z$

- hh
- 4-jet background(jjjj) is not included because efficiencies for jets faking photons is quite low, and distributed at low photon p_T and invariant masses.
- Generator-level cut on the diphoton pair (106 $< M_{\gamma\gamma} <$ 146) in Backgrounds that include $\gamma\gamma$.
- Some of our samples have low statistics, but real data should give better estimates using sidebands away from the signal regions in $M_{\gamma\gamma}$, M_{bb} , and M_X .

Most significant backgrounds after sequential cuts, for $m_\eta = 275~{ m GeV}$:

Background	Ngen	$\sigma_{\sf pass}$ (fb)				
	_	$bb\gamma\gamma$	$M_{\gamma\gamma}$	M _{bb}	M _X	
$pp ightarrow \gamma \gamma b \overline{b}$	200000	1.344	0.398	0.120	0.0475	
$pp ightarrow \gamma \gamma bq/\overline{b}q$	200000	1.050	0.313	0.104	0.0270	
$pp ightarrow \gamma \gamma c \overline{c}$	440000	0.406	0.122	0.0398	0.0170	
$pp ightarrow \gamma \gamma q c/q \overline{c}$	600000	0.500	0.145	0.0415	0.0120	
$pp ightarrow \gamma \gamma q \overline{q}$	1200000	0.735	0.244	0.0940	0.0096	
$pp ightarrow \gamma \gamma t \overline{t}$	200000	0.152	0.0771	0.0211	0.0053	
$pp ightarrow t \overline{t} h$	100000	0.0752	0.0647	0.0176	0.0043	
Total		4.353	1.430	0.661	0.127	

Other backgrounds are smaller, but still included. Only the σ_{pass} after the last cut depends on M_X .

- For larger m_{η} , the more important backgrounds become: $\gamma \gamma q \overline{q}$ and $\gamma \gamma b q / \overline{b} q$ and $\gamma \gamma q c / q \overline{c}$ with q = u, d, s.
- Backgrounds are also more uncertain in our analysis due to statistics of our event samples; determination from data-driven methods will be more reliable.

Distribution of signals and Background

With a 2 pb signal for $pp \rightarrow \eta \rightarrow hh$, and 300 fb⁻¹ at $\sqrt{s} = 14$ TeV, discovery should be very easy.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Presentation Outline

Motivations

Event Generation and Simulation

Event Selection

Discovery Prospects

Event Selection

Discovery Prospects

Discovery Prospects

• Set a requirement for a 5-sigma observation of the signal by demanding that $S/\sqrt{B} > 5$, where S and B are the numbers of signal and background events, respectively, that pass the **S4** selection.

Discovery Prospects

- Set a requirement for a 5-sigma observation of the signal by demanding that $S/\sqrt{B} > 5$, where S and B are the numbers of signal and background events, respectively, that pass the **S4** selection.
- Also require a minimum of S > 10 signal events for a discovery, which becomes important when the signal and background cross-sections are both low.

・ロト ・聞ト ・ヨト ・ヨト

э

Discovery prospects of $\sigma(pp \rightarrow \eta \rightarrow hh)$

- Discovery for $\sigma = 1$ pb easily possible with less than $\leq 100 \text{ fb}^{-1}$ if $m_{\eta} \geq 275 \text{ GeV}$.
- Discovery for $\sigma = 150-200$ fb may be possible with 300 fb⁻¹.

- With **15** fb⁻¹ LHC would be able to discover the di-Higgs decay of stoponium with $m_{\eta_{\tilde{t}}} = 275$ GeV, if the BR $\approx 100\%$.
- For lower branching ratios, the required integrated luminosity is clearly much higher.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

• LHC searches for di-Higgs resonances should be a priority in the future, in order to exploit the Higgs discovery as a possible window to new physics.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Conclusion

- LHC searches for di-Higgs resonances should be a priority in the future, in order to exploit the Higgs discovery as a possible window to new physics.
- A di-Higgs resonance of any heavy scalar with a cross-section of 1 pb can be easily discovered with less than 100 fb⁻¹ of integrated luminosity, as long as $m_{\eta} \ge 275$ GeV.

Conclusion

- LHC searches for di-Higgs resonances should be a priority in the future, in order to exploit the Higgs discovery as a possible window to new physics.
- A di-Higgs resonance of any heavy scalar with a cross-section of 1 pb can be easily discovered with less than 100 fb⁻¹ of integrated luminosity, as long as $m_{\eta} \ge 275$ GeV.
- If heavy stops and/or small BR, then prospects are grim for the di-Higgs channel.

Conclusion

- LHC searches for di-Higgs resonances should be a priority in the future, in order to exploit the Higgs discovery as a possible window to new physics.
- A di-Higgs resonance of any heavy scalar with a cross-section of 1 pb can be easily discovered with less than 100 fb⁻¹ of integrated luminosity, as long as $m_{\eta} \geq 275$ GeV.
- If heavy stops and/or small BR, then prospects are grim for the di-Higgs channel.
- Searches for di-Higgs resonances should be performed anyway, on general grounds.

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト …

æ

M_X Distribution

Most of the events are within about $\pm 7\%$ of m_{η} .

M_{bb} distribution

The M_{bb} distributions of the total background is reduced after including cut on M_X .

M_X distribution

The M_X distributions of the total background is reduced after including cut on M_{bb} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々ぐ

Stop search from CMS:

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ • の Q (2)

ATLAS and CMS looked for di-higgs resonance

ATLAS bbbb

CMS $\gamma\gamma b\overline{b}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

Stoponium binding energy $2m_{\tilde{t}} - m_{\eta_{\tilde{t}}}$ as a function of stoponium mass $m_{\eta_{\tilde{t}}}$:

SPM 0801.0237, using Hagiwara et al 1990 potential model, extrapolated from charmonium and bottomonium data.

In contrast, stoponium decay width due to annihilation is typically of order few MeV. Since $E_{\text{binding}} \gg \Gamma_{\text{decay}}$, stoponium will form, unless 2-body stop decay modes are kinematically open.

Backgrounds

Background	Ngen	σ_{pass} (fb)					
		$bb\gamma\gamma$	$M_{\gamma\gamma}$	M _{bb}	M _X		
$pp ightarrow \gamma \gamma b \overline{b}$	200000	1.344	0.398	0.120	0.0475		
$pp ightarrow \gamma \gamma c \overline{c}$	440000	0.406	0.122	0.0398	0.0170		
$pp ightarrow \gamma \gamma t \overline{t}$	200000	0.152	0.0771	0.0211	0.00533		
$pp ightarrow \gamma \gamma bq/\overline{b}q$	200000	1.050	0.313	0.104	0.0270		
$pp ightarrow \gamma \gamma q c / q \overline{c}$	600000	0.500	0.145	0.0415	0.0120		
$pp ightarrow \gamma \gamma q \overline{q}$	1200000	0.735	0.244	0.0940	0.0096		
$pp ightarrow \gamma \gamma Z$	200000	0.0660	0.0232	0.00276	0.00072		
$pp ightarrow t \overline{t} h$	100000	0.0752	0.0647	0.0176	0.00428		
pp ightarrow Zh	100000	0.00940	0.00812	0.00338	0.00068		
$pp ightarrow b \overline{b} h$	100000	0.0116	0.0102	0.00257	0.00053		
pp ightarrow hh	100000	0.0103	0.00936	0.00772	0.00263		
Total		4.353	1.430	0.661	0.127		