A Swarm of Bs – arxiv:1402.4481

Jared A. Evans

jaredaevans@gmail.com

New High Energy Theory Center Department of Physics and Astronomy Rutgers University

- To highlight a gap in existing LHC coverage
- To show a variety of new physics models that could live in the gap
- ► To present a *simple*, asymmetric study that could fill the gap
 - Asymmetric = separate exclusion and discovery methods

- To highlight a gap in existing LHC coverage
- To show a variety of new physics models that could live in the gap
- ► To present a *simple*, asymmetric study that could fill the gap
 - Asymmetric = separate exclusion and discovery methods

New physics can hide in high *b*-jet multiplicity final states!

High *b*-jet multiplicity A Stealth SUSY Example

LHC signal: 6 bs, no ∉_T

Evans (Rutgers)

High *b*-jet multiplicity

A Fourth Generation Example

$$b' \rightarrow bh \rightarrow b(b\bar{b})$$

High *b*-jet multiplicity An MFV RPV SUSY Example (focus of this talk)

LHC signal: 8 jets, 6 *b*s, no $\not\!\!E_T$ & BR = 100% realistic

Evans (Rutgers)

BEES BEES BEES!!!

Recast Searches – (no searches with MVA, BDT, Neural Net)

ATLAS

CMS

Final State	\sqrt{s}	L	Reference	Final State	\sqrt{s}	L	Reference	Final State	\sqrt{s}	L	Reference
3ℓ+jets+MET	8	13.0	CONF-2012-151	t' (OS DIL)	8	19.6	PAS-B2G-13-015	2-6 jets+MET	8	20.3	CONF-2013-047
3ℓ+MET (old)	8	13.0	CONF-2012-154	OS DIL+MET	7	1.04	arXiv:1110.6189	2-6 jets+MET (old)	8	5.8	CONF-2012-109
3ℓ+MET	8	20.7	CONF-2013-035	OS DIL+jets+MET	7	4.7	arXiv:1208.4688	7-10 jets+MET w/b	8	20.3	CONF-2013-054
4ℓ (old)	8	13.0	CONF-2012-153	OS DIL+MET	7	4.98	arXiv:1206.3949	7-10 jets+MET w/M	8	20.3	CONF-2013-054
4.ℓ+MET	8	20.7	CONF-2013-036	leptonic m _{T2}	7	4.7	arXiv:1209.4186	6-9 jets+MET	8	5.8	CONF-2012-103
3-4 <i>l</i>	8	19.5	PAS-SUS-13-003	Z+jets+MET	7	4.98	arXiv:1204.3774	jets+MET	8	19.5	PAS-SUS-13-012
3ℓ	8	19.5	PAS-SUS-13-008	Z+jets+MET	7	2.05	arXiv:1204.6736	b+jets+MET	8	19.4	arXiv:1305.2390
4l	8	19.5	PAS-SUS-13-010	ℓ +iets+MET	8	5.8	CONE-2012-104	3b+jets+MET (old)	8	12.8	CONF-2012-145
b' (3ℓ)	7	4.9	arXiv:1204.1088	P+3b+iets+MET	8	20.1	CONE-2013-061	3b+jets+MET	8	20.1	CONF-2013-061
3ℓ	7	1.02	CONF-2011-158	ℓ+b+6i+MET	8	19.4	PAS-SUS-13-007	jets w/ Ct 7 w/b	8	11.7	arXiv:1303.2985
4l	7	1.02	CONF-2011-144	L+7i+MET	7	47	CONE-2012-140	monojet+MET	8	19.5	PAS-EXO-12-048
3ℓ+MET	7	2.06	arXiv:1204.5638	L+iets+MET	7	47	PAS-SUS-12-010	monojet+MET	8	10.5	CONF-2012-147
3ℓ+MET	7	4.7	arXiv:1208.3144	ℓ+iets+MET	7	47	CONE-2012-041	2-6 jets+MET	7	4.7	CONF-2012-033
4ℓ+MET	7	2.06	CONF-2012-001	ℓ+b+iets+MET	7	2.05	arXiv:1203.6193	6-9 jets+MET	7	4.7	CONF-2012-037
3-4 <i>l</i>	7	4.98	arXiv:1204.5341	ℓ+b+iets+MET	7	4.98	PAS-SUS-11-027	jets+MET	7	4.98	arXiv:1207.1898
SS DIL+MET	8	5.8	CONF-2012-105	ℓ+b+iets+MET	7	4.98	PAS-SUS-11-028	jets+MET (old)	7	1.1	PAS-SUS-11-004
SS DIL w/b (SUSY)	8	20.7	CONF-2013-007					b+jets+MET	7	2.05	arXiv:1203.6193
SS DIL w/b (Exo.)	8	14.3	CONF-2013-051	$1/2\tau$ +jets+ME I	8	20.7	CONF-2013-026	b+jets+MET	7	4.98	arXiv:1208.4859
SS DIL w/b	8	10.5	arXiv:1212.6194	4ℓ+MEIw/T	8	20.7	CONF-2013-036	b+jets+MET (old)	7	1.1	PAS-SUS-11-006
SS DIL	8	19.5	PAS-SUS-13-013	3-4ℓ w/T	8	19.5	PAS-SUS-13-003	3b+jets+MET	7	4.7	CONF-2012-058
t (SS DIL)	8	19.6	PAS-R2G-13-015	1/27+jets+MEI	7	4.7	arXiv:1210.1314	jets w/ Ct _T w/b	7	4.98	PAS-SUS-11-022
SS DII	7	4 98	arXiv:1205.6615	T+L+jets+ME1	7	4.7	arXiv:1210.1314	jets w/ c T ₇ (old)	7	1.14	arXiv:1109.2352
SS DIL w/b	7	4.00	arXiv:1205.3933	τ +jets+ME1 (old)	7	2.05	CONF-2012-005	L+b+iets (low MET)*	7	5.0	arXiv:1210.7471
SSSE DII	7	4.00	arXiv:1207.6079	2T +jets+ME1 (old)	7	2.05	arXiv:1203.6580	L+3b+iets (low MET)	8	14.3	CONE-2013-018
SSSE DIL	7	1.6	arXiv:1201.1091	OS DIL+MET w/T	7	4.98	arXiv:1206.3949	6-7 jets (no MET)	8	20.3	CONE-2013-091
SS DII	7	4.7	arXiv:1210.4538	SS DIL w/T	7	4.98	arXiv:1205.6615	6 jets (no MET)	7	4.6	arXiv:1210.4813
SS DIL +jets+MET	7	2.05	arXiv:1203.5763	3-4ℓ w/17	7	4.98	arXiv:1204.5341	up to 10 objects ("BH")	8	12.1	arXiv:1303.5338
SS DIL+MET	7	1.04	arXiv:1110.6189	3-4ℓ w/2⊤	7	4.98	arXiv:1204.5341	(µi)(µi)	8	19.6	PAS-EXO-12-042
b' (SS DIL)	-	4.7	CONE 2012 120	tt xsec (DIL)	8	2.4	PAS-TOP-12-007	$(\tau_{b})(\tau_{b})$	7	4.8	PAS-EXO-12-002
6 (00 DIL)	1	4.7		tt xsec (DIL)	7	0.70	arXiv:1202.4892	()()			
U (35 DIL)	'	4.9	arAiv:1204.1088	tt xsec (DIL)	7	2.3	arXiv:1208.2671				
				$t\overline{t}$ xsec (DIL w/ $ au$)	7	~ 2	arXiv:1203.6810				
				tt+iet (LJ)	7	5.0	PAS-EXO-11-056				

Evans (Rutgers)

arXiv:1109.4725

7 1.04

 $t\overline{t}+m_{\tau}$ (LJ)

MFV RPV Stops

8 jets, 6 of which are $bs - no \not\in_T$, no ℓs

NO SENSITIVITY!!!

Atlas 6-7 jets w/ 2 b-tags is close to exclusion

3 b-tag bin could set limits now!

5 b-tags could do MUCH better

SM background uncertain \Rightarrow use asymmetric method

A swarm of bs

Exclusion

Preselection Cuts										
$H_T(p_T > 40; \eta < 2.5) > 750 \text{ GeV}$ No isolated leptons with $p_T > 20 \text{ GeV}, \eta < 2.4 \text{ and } I_{rol} < 0.15$										
Cuts	Region 1 Region 2 Region 3 Region 4 Region 5									
H _T (GeV)	750 1000 1250 1500 175				1750					
b _{eff} (%)	50 60 70									
c _{eff} (%)	4.0 9.0 19									
j _{eff} (%)	0.07	0.30 1.5								
n _b	\geq 5 <i>b</i> -tagged jets w/ $ ho_T$ $>$ 30 GeV and $ \eta $ $<$ 2.5									

Backgrounds	K-factor	# events in 20 fb ⁻¹ at 8 TeV					
Dackgrounds		Region 1	Region 2	Region 3	Region 4	Region 5	
bbbb + {jets}	3	5.3	4.3	1.3	1.4	0.5	
bbbbbb	3	0.5	0.2	< 0.1	< 0.1	< 0.1	
bbbbcc	3	0.1	0.1	< 0.1	< 0.1	< 0.1	
tībb	-	0.9	1.3	0.5	0.7	0.3	
Tota	al	6.8	5.9	1.9	2.1	0.7	

Sigr	nal	# events in 20 fb ⁻¹ at 8 TeV					
m _i (GeV)	$m_{\tilde{\chi}^{\pm}}$ (GeV)	Region 1	Region 2	Region 3	Region 4	Region 5	
150	100	63.7	18.3	5.1	3.9	1.3	
300	200	109.5	78.0	22.2	15.9	5.1	
500	350	44.5	50.0	19.7	15.2	5.7	
700	600	6.0	12.6	8.1	7.9	3.4	
800	600	2.7	6.1	5.1	6.0	2.9	
900	875	0.2	0.6	0.6	1.1	0.7	

A swarm of bs

Exclusion

Preselection Cuts										
$H_T(p_T > 40; \eta < 2.5) > 750 \text{ GeV}$ No isolated leptons with $p_T > 20 \text{ GeV}, \eta < 2.4 \text{ and } I_{rol} < 0.15$										
Cuts	Region 1 Region 2 Region 3 Region 4 Region 5									
H _T (GeV)	750	1000 1250		1500	1750					
b _{eff} (%)	50 60 70									
<i>c_{eff}</i> (%)	4.0	9.0 19								
j _{eff} (%)	0.07	0.	30	1.5						
nb	\geq 5 <i>b</i> -tagged jets w/ $ ho_T$ $>$ 30 GeV and $ \eta $ $<$ 2.5									

Assume zero background (or $\delta_{bckd} \rightarrow \infty$) \Rightarrow conservative limits

Evans (Rutgers)

Discovery

Conservative exclusion method cannot be used for discovery

 $m_{ ilde{t}} = 500 \; {
m GeV} \qquad m_{\chi^\pm} = 350 \; {
m GeV} \qquad ({
m R2})$

Use CMS jet ensemble technique

An array new physics models could be hiding in many b-jets

- An array new physics models could be hiding in many b-jets
- MFV RPV stops a great benchmark for study

- An array new physics models could be hiding in many b-jets
- ► MFV RPV stops a great benchmark for study
- This is an outstanding GAP in the LHC program

- An array new physics models could be hiding in many b-jets
- ► MFV RPV stops a great benchmark for study
- This is an outstanding GAP in the LHC program
- Limits could be set now by looking for \geq 5 *b*-jets

- An array new physics models could be hiding in many b-jets
- MFV RPV stops a great benchmark for study
- This is an outstanding GAP in the LHC program
- Limits could be set now by looking for \geq 5 *b*-jets
- Backgrounds are likely tiny, but very uncertain

- An array new physics models could be hiding in many b-jets
- MFV RPV stops a great benchmark for study
- This is an outstanding GAP in the LHC program
- Limits could be set now by looking for \geq 5 *b*-jets
- Backgrounds are likely tiny, but very uncertain
- An asymmetric study can probe this, but someone needs to do it!