Exotic signals from NMSSM with RH sneutrino LSP

Osamu Seto

(Hokkai-Gakuen Univ.)

Refs: 1311.7260 [hep-ph] JHEP in press

with David G. Cerdeño, Victor Martin-Lozano

Starting point

• We SUSY

- Heavy Higgs \rightarrow (1) Heavy stop and/or large A
 - (2) beyond MSSM NMSSM

+ seesaw

- No MET \rightarrow (1) Continue to search
 - (2) another more exotic signature

Displaced vertex or Long-lived charged particle

Content

- Model: NMSSM with right-handed neutrino
- Benchmark points
- Displaced vertex
- Long-lived charged particle
- Summary

§ Model: NMSSM with righthanded neutrino

Model [D. G. Cerdeño, C. Muñoz and OS (2009)]

• Superpotential [R. Kitano and K. y. Oda, (2000)]

The superpotential is given by

$$W = W_{\text{NMSSM}} + \lambda_N SNN + y_N L \cdot H_2 N, \tag{2.1}$$

$$W_{\text{NMSSM}} = Y_u H_2 \cdot Qu + Y_d H_1 \cdot Qd + Y_e H_1 \cdot Le - \lambda S H_1 \cdot H_2 + \frac{1}{3} \kappa S^3, \quad (2.2)$$

where flavour indices are omitted and the dot denotes the $SU(2)_L$ antisymmetric product.

- Right-handed sneutrino can be the LSP.
- Right-handed Majorana neutrino mass

$$M_N = 2\lambda_N v_s$$

Model [D. G. Cerdeño, C. Muñoz and OS (2009)]

Left-handed Majorana neutrino mass

$$m_{
u_L}=rac{y_N^2v_2^2}{M_N}pprox 0.1\ {
m eV}$$
 from RH neutrino $M_N=2\lambda_N v_s$

• By seesaw with a weak scale *MN*, y*N* is of order of ye!

The origin of long-lived

§ Benchmark points

Benchmark

Scenarios	S1			S2			S3		
$\tan \beta$	2.0			2.5			2.7		
M_1, M_2, M_3	500, 650, 1950			300, 600, 1800			345, 575, 2500		
$m_{L,E}$	300			250			1000,350		
$m_{Q,U,D_{1,2}}$	2000			2000			2000		
m_{Q,U,D_3}	1500			2000			2000		
$m_{H_1^0}, m_{H_2^0}, m_{H_3^0}$	99.5, 125.8, 358.6		125.7, 225.7, 446.2			125.8, 656.9, 1650.5			
$m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_2^{\pm}}$	144.9, 674.1		173.6, 627.5			530.6, 676.5			
$m_{\tilde{ au}_1}, \ m_{\tilde{ au}_2}$	290.5, 312.9			245.9, 259.5			352.0, 1000.8		
Benchmark Points	S1a	S1b	S1c	S2a	S2b	S2c	S3a	Sb3	
λ_N	0.165	0.091	0.017	0.067	0.033	0.017	0.083	0.151	
$m_{ ilde{N}}$	92.2	128.9	80.6	68.5	130.9	42.5	190.7	179.2	
A_{λ_N}	-250	-250	-250	-150	-150	-150	-500	-750	
y_N	10^{-7}	10^{-6}	10^{-5}	10^{-6}	10^{-6}	10^{-5}	10^{-7}	10^{-7}	
$m_{ ilde{N}_1}$	20	100	70	70	130	40	200	65	
M_N	100	55	10	40	20	10	170	310	

§ Displaced vertex

• Production

	$\sigma_{H_i^0}^{8\text{TeV}}$	$\sigma_{\tilde{\chi}_{j}^{\pm}\tilde{\chi}_{i}^{0}}^{8\text{TeV}}$	$\sigma_{H_i^0}^{13\text{TeV}}$	$\sigma^{13\text{TeV}}_{\tilde{\chi}_j^{\pm}\tilde{\chi}_i^0}$	M_N	$m_{ ilde{N}_1}$	$m_{ ilde{\chi}^0_1}$
S1a	2×10^{-5}	0.87	3×10^{-4}	1.94	100	20	127
S1b	0.89	_	2.06	_	55	100	127
S1c	0.54	0.87	1.24	1.94	10	70	127

Results

• Under certain kinematical cuts,

 $21 + MET by \nu$

8 TeV invariant mass for leptons

Results

• Under certain kinematical cuts,

 $21 + MET by \nu$

13 TeV invariant mass for leptons N mass

Results

• Under certain kinematical cuts,

§ Long-lived charged particle

Decay and Traveling distance

	•	$\sqrt{s} = 13 \text{ TeV}, \ \mathcal{L} = 100 \text{fb}^{-1}$
	$\sigma_{\tilde{\chi}_{j}^{\pm}\tilde{\chi}_{i}^{0}}^{8\text{TeV}} = 1.17\text{fb}$	$\sigma_{\tilde{\chi}_j^{\pm}\tilde{\chi}_i^0}^{13\text{TeV}} = 4.77\text{fb}$
S3a	1.7	30.3
S3b	1.5	28.9

§ Summary

Exotic signals in the NMSSM with RH sneutrino

- Displaced vertex by RH neutrino, long-lived stau NLSP.
- A χ^0 $\chi^{\bar{}}$ pair production is important.
- @13 TeV LHC, O(10) events are expected.

• Rich physics, e.g., Measurement of M_N , Discrimination with other models (GMSB, $\mathbb{R}p,...$)