MONO-HIGGS DETECTION OF DARK MATTER AT THE LHC

Asher Berlin

University of Chicago

In collaboration with Tongyan Lin and Lian-Tao Wang arXiv:1402.7074 [hep-ph]

(Also, see Carpentar et al., arXiv:1312.2592 and Petrov et al., arXiv:1311.1511

Dominant irreducible background = Z+h production with $\mathbf{Z} \rightarrow \nu \overline{\nu}$.

 $BF(h \to b\bar{b}) \approx 0.6$ $BF(h \to \gamma\gamma) \approx 2.3 \times 10^{-3}$

Dominant irreducible background = Z+h production with $\mathbf{Z} \rightarrow \nu \overline{\nu}$.

Depending on the Higgs decay channel, other SM backgrounds can be comparable or larger.

 $BF(h \to b\bar{b}) \approx 0.6$ $BF(h \to \gamma\gamma) \approx 2.3 \times 10^{-3}$

Dominant irreducible background = Z+h production with $\mathbf{Z} \rightarrow \nu \overline{\nu}$.

Depending on the Higgs decay channel, other SM backgrounds can be comparable or larger.

What Higgs decay channels will be most sensitive?

 $BF(h \to bb) \approx 0.6$ $BF(h \to \gamma\gamma) \approx 2.3 \times 10^{-3}$

Dominant irreducible background = Z+h production with $\mathbf{Z} \rightarrow \nu \overline{\nu}$.

Depending on the Higgs decay channel, other SM backgrounds can be comparable or larger.

What Higgs decay channels will be most sensitive?

We consider decay to bb or $\gamma\gamma$.

 $BF(h \to b\overline{b}) \approx 0.6$ $BF(h \to \gamma\gamma) \approx 2.3 \times 10^{-3}$

Effective Field Theory (EFT)

- Dim. 6 : Direct Z+DM coupling. Direct detection and invisible Z width are very constraining.
 - <u>Dim. 7</u>: Mild constraints on the cutoff. Softer momentum transfer dependence.
- Dim. 8: Stronger constraints on the cutoff. Harder momentum transfer dependence.

<u>95% CL</u> <u>Constraints on</u> <u>Cutoff from</u> <u>Mono-Higgs</u>

<u>Red Lines</u>: Lower bound from naive requirement.

<u>Blue Regions</u>: Excluded regions after "unitarizing".

Enlarge gauge group: new U(1)

- Enlarge gauge group: new U(1)
- Enlarge Higgs sector:
 2nd Higgs doublet

	Φ_d	Φ_u	Q_L	d_R	u_R
$U(1)_{Z'}$	0	1/2	0	0	1/2

- Enlarge gauge group: new U(1)
- Enlarge Higgs sector:
 2nd Higgs doublet
- All particles can be produced on shell.

	Φ_d	Φ_u	Q_L	d_R	u_R
$U(1)_{Z'}$	0	1/2	0	0	1/2

- Enlarge gauge group: new U(1)
- Enlarge Higgs sector:
 2nd Higgs doublet
- All particles can be produced on shell.
- Assume pseudoscalar has order 1 BF to DM.

	Φ_d	Φ_u	Q_L	d_R	u_R
$U(1)_{Z'}$	0	1/2	0	0	1/2

- Enlarge gauge group: new U(1)
- Enlarge Higgs sector:
 2nd Higgs doublet
- □ All particles can be produced on shell.
- Assume pseudoscalar has order 1 BF to DM.

$$\epsilon \equiv \frac{1}{M_{Z'}^2 - M_Z^2} \frac{gg_z}{2\cos\theta_w} (z_d v_d^2 + z_u v_u^2)$$

Small mixing Z-Z' angle. Slightly alters Z mass.

	Φ_d	Φ_u	Q_L	d_R	u_R
$U(1)_{Z'}$	0	1/2	0	0	1/2

- Enlarge gauge group: new U(1)
- Enlarge Higgs sector: 2nd Higgs doublet
 - All particles can be produced on shell.
- Assume pseudoscalar has order 1 BF to DM.

$$\epsilon \equiv \frac{1}{M_{Z'}^2 - M_Z^2} \frac{gg_z}{2\cos\theta_w} (z_d v_d^2 + z_u v_u^2)$$

Small mixing Z-Z' angle. Slightly alters Z mass.

Yet another form of Higgs + MET is Z+h production via Z' resonance!

	Φ_d	Φ_u	Q_L	d_R	u_R
$U(1)_{Z'}$	0	1/2	0	0	1/2

Experimental Constraints

$$\rho_0 = 1 + \epsilon^2 \left(\frac{M_{Z'}^2 - M_Z^2}{M_Z^2} \right) \le 1.0009$$

Experimental Constraints

$h \rightarrow b\bar{b} + MET$

- □ Large branching fraction.
- **Dominant irreducible background = Z+h production.**
- \Box Dominant reducible background = tt and Zbb.
- $\Box tt$ dominates at large energies.
- □ Consider MET cuts from 120-250 GeV.

 $h \rightarrow \gamma \gamma + MET$

- Very small branching fraction.
- **Dominant irreducible background = Z+h production.**
- \Box Dominant reducible background = $Z\gamma\gamma$.
- □ Increased sensitivity at 14 TeV.
- □ Consider MET cuts from 100-250 GeV.

Effective Field Theory (EFT)

 $\frac{\mathbf{Dim. 7:}}{\frac{1}{\Lambda^3}} \bar{X} \gamma^{\mu\nu} X \times i \left[(D_{\mu}H)^{\dagger} D_{\nu}H - \text{h.c.} \right] \square$

Dim. 8: $\frac{1}{\Lambda^4} \frac{1}{2} (\phi^{\dagger} \partial^{\mu} \phi + \text{h.c.}) (B_{\nu\mu} H^{\dagger} D^{\nu} H + \text{h.c.})$ $\frac{1}{\Lambda^4} \bar{X} \gamma^{\mu} X \left(W^a_{\nu\mu} H^{\dagger} t^a D^{\nu} H + \text{h.c.} \right)$

Rate is smaller when DM couples to 2 Higgs

These same operators give Mono-Z/W. This is weaker due to schannel Higgs production.

EFT Unitarity

Mono-Higgs signal comes from high momentum transfer region.

- Constraints on cutoff often of order 100 GeV (if even). Can see that momentum transfer exceeds this easily.
- We should worry about the unitarity of our EFT description!

Momentum Transfer at 8 TeV, for10 GeV (gray) or 100 (black) GeV DM, from Mono-Higgs process of Dim.-8 fermionic operator. Zh production (red) is the irreducible SM background.

\Box Impose: $Q_{tr} < n\Lambda$, $n = 4, 4\pi, \infty$

(the naive limit)

 \Box Impose: $Q_{tr} < n\Lambda$, $n = 4, 4\pi, \infty$

Throw away events that violate this.

$\square \text{ Impose: } Q_{tr} < n\Lambda \quad , \quad n = 4, 4\pi, \infty$ (the naive limit)

- Throw away events that violate this.
- Rescale cross section at parton level.

(the naive limit)

 $\square \text{ Impose: } Q_{tr} < n\Lambda \quad , \quad n = 4, 4\pi, \infty$

- Throw away events that violate this.
- Rescale cross section at parton level.
- Specific value of "n" depends on form of operator and on UVcompletion.

(the naive limit)

Impose: $Q_{tr} < n\Lambda$, $n = 4, 4\pi, \infty$

- Throw away events that violate this.
- Specific value of "n" depends on form of operator and on UVcompletion.

Dim. 8 operator, fermion DM, 8 TeV

(the naive limit)

Impose: $Q_{tr} < n\Lambda$, $n = 4, 4\pi, \infty$

- Throw away events that violate this.
- Specific value of "n" depends on form of operator and on UVcompletion.

Don't take too literally. Only illustrates (conservatively) error in assuming 1 operator is relevant.

Dim. 8 operator, fermion DM, 8 TeV

Higgs+DM: $\Gamma_{Z'\to hA^0} = (g_z \sin\beta\cos\beta)^2 \frac{|p|}{24\pi} \frac{|p|^2}{M_{Z'}^2}$

Additional source of Higgs+MET: $\Gamma_{Z' \to hZ} = (g_z \sin^2 \beta)^2 \frac{|p|}{24\pi} \left(\frac{|p|^2}{M_{Z'}^2} + 3\frac{M_Z^2}{M_{Z'}^2}\right)$

Mono-Higgs Signal

Higgs+DM: $\Gamma_{Z' \to hA^0} = (g_z \sin \beta \cos \beta)^2 \frac{|p|}{24\pi} \frac{|p|^2}{M_{Z'}^2}$ For small tan β : rate ~ tan² β For large tan β : rate ~ cot² β

Additional source of Higgs+MET: $\Gamma_{Z' \to hZ} = (g_z \sin^2 \beta)^2 \frac{|p|}{24\pi} \left(\frac{|p|^2}{M_{Z'}^2} + 3\frac{M_Z^2}{M_{Z'}^2}\right)$

Mono-Higgs Signal

] **Higgs+DM:** $\Gamma_{Z' \to hA^0} = (g_z \sin \beta \cos \beta)^2 \frac{|p|}{24\pi} \frac{|p|^2}{M_{Z'}^2}$ <u>For small tan β :</u> rate ~ tan² β <u>For large tan β :</u> rate ~ cot² β

Additional source of Higgs+MET: $\Gamma_{Z' \to hZ} = \left(g_z \sin^2 \beta\right)^2 \frac{|p|}{24\pi} \left(\frac{|p|^2}{M_{Z'}^2} + 3\frac{M_Z^2}{M_{Z'}^2}\right)$

 $\frac{\text{For small tan }\beta:}{\text{For large tan }\beta:} \text{ rate } \sim \tan^4 \beta$ $\frac{\text{For large tan }\beta:}{\text{Increases for smaller }M_{Z'}}$

Dark Matter Coupling

- **Want order 1 BF of pseudoscalar to DM**
- Singlet-Doublet Fermionic Dark Matter (Cheung and Sanford arXiv 1311.5896 [hep-ph])
- □ Introduce two SU(2) doublet Weyls with hypercharge $\pm 1/2$, D₂ and D₁, respectively
- Introduce total gauge singlet Weyl S
- Assume all are neutral under $U(1)_{Z'}$

 $-\mathcal{L} \supset \frac{1}{2}M_S^2 S^2 + M_D D_1 D_2 + y_1 S D_1 \Phi_d + y_2 S \Phi_d^{\dagger} D_2 + \text{h.c.}$

