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When is this process dominant ?




Higgs + MET at the LHC

Dominant irreducible background = Z+h production
with Z— V.

BF(h — bb) ~ 0.6
BF(h — vv) ~ 2.3 x 1073
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Higgs + MET at the LHC

Dominant irreducible background = Z+h production
with Z— V.

Depending on the Higgs decay channel, other SM
backgrounds can be comparable or larger.

What Higgs decay channels will be most sensitive?

We consider decay to bE or ).

BF(h — bb) ~ 0.6




~ffective Field Theory (EFT)

Dim. 6 : Direct Z+DM coupling. Direct detection and
invisible Z width are very constraining.

Dim. 7: Mild constraints on the cutoff. Softer
momentum transfer dependence.

Dim. 8: Stronger constraints on the cutoff. Harder
momentum transfer dependence.
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LHC Run 1, Dim-8 operator, fermion DM
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Simplified Model: Z' + Type Il 2H

Enlarge gauge group:
new U(1)
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Simplified Model

Enlarge gauge group:
new U(1)

Enlarge Higgs sector:
2nd Higgs doublet

All particles can be
produced on shell.

Assume pseudoscalar
has order 1 BF to DM.

! 99-
M2, — M2 2cos 8,

2 2 Small mixing Z-Z’ angle.
(2403 + 2uvy,) Slightly alters Z mass.

B




Simpliflied Model: Z" + Type Il 2H

DM

Yet another form of Higgs + MET is

Enlarge gauge group:

Z+h production via Z’ resonance!
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Enlarge Higgs sector:
2nd Higgs doublet

All particles can be
produced on shell.

Assume pseudoscalar
has order 1 BF to DM.
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Small mixing Z-Z’ angle.
Slightly alters Z mass.




-xperimental Constraints
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New heavy scalars

no lighter than
300 GeV.

Alignment limit. 3
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Dijet resonance
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EW precision:
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mono—Higgs reach
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QUESTIONS?







h — bb+ M

Large branching fraction.

Dominant irreducible background = Z+h production.

Dominant reducible background = t?? and / bb -

{1l dominates at large energies.

Consider MET cuts from 120-250 GeV.




h— v+ M

Very small branching fraction.

Dominant irreducible background = Z+h production.
Dominant reducible background = Z~-y.

Increased sensitivity at 14 TeV.

Consider MET cuts from 100-250 GeV.
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~ffective Field Theory (EFT)

Rate is smaller when
DM couples to 2 Higgs

These same operators
give Mono-Z/W. This is
weaker due to s-
channel Higgs
production.

When is this EFT valid
to order 1?




-+ Unitarity

Mono-Higgs signal
comes from high
momentum transfer
region.

Constraints on cutoff
often of order 100
GeV (if even). Can see
that momentum
transfer exceeds this
easily.
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‘Impose” Unitarity
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‘Impose” Unitarity

(the naive limit)
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‘Impose” Unitarity

(the naive limit)
Impose: ;. <nA , n =4, 4mr,oo|— i

Throw away events
that violate this.
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‘Impose’” Unitarity

(the naive limit)
Impose: ;. <nA , n =4, 4mr,oo|— 7

Throw away events 107

that violate this.

10° |

Rescale cross section ~ 1000

at parton level.

Specific value of “n”
depends on form of

operator and on UV-
completion.
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‘Impose” Unitarity

(the naive limit)
Impose: ;. <nA , n =4, 4mr,oo|— D7

Throw away events 107, ————— S
mDM=1OGeV

that violate this. 105' o= 100GV ||

_Qtr< 0

Rescale cross section ~ 1000

at parton level.

Specific value of “n”

depends on form of

operator and on UV-

completion.

Don’t take too literally. Only
illustrates (conservatively)

error in assuming 1 operator
is relevant.
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Mono-Higgs Signal
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Higgs+DM: I'; _,; 40 = (g, sin 8 cosf) Yy
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Mono-Higgs Signal

) |p| |p|2
247 M%,

HiggS"‘DM: FZ’—)hAO — (gz sin 6 COS B)
For small tan 3: rate ~ tan? f
For large tan f3: rate ~ cot? 3

Higgs+MET: Tz .z = (g.sin? §)°

Additional source of ‘ p| ( ME +3 M% )

247 M%/ M%/
For small tan [}: rate ~ tan* f
For large tan : rate ~ 1

Increases for smaller Mz
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Dark Matter Coupling

Want order 1 BF of pseudoscalar to DM

Singlet-Doublet Fermionic Dark Matter (Cheung and
Sanford arXiv 1311.5896 [hep-ph])

Introduce two SU(2) doublet Weyls with hypercharge
+1/2, D2 and Di, respectively

Introduce total gauge singlet Weyl S

Assume all are neutral under U(1)z

1
—L£ 5 5M3S® + MpD1Ds +y1SD1®q + y2S®! Dy + h.c.
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