Effective Field Theory for Top Quark Physics at NLO in QCD

Cen Zhang

Université Catholique de Louvain
Centre for Cosmology, Particle Physics and Phenomenology

Based on 1404.1264 and on going works with C. Degrande, G. Durieux, F. Maltoni and J. Wang

May 6 2014
Pittsburgh
Outline

1. Top EFT @ NLO Motivation
2. Top EFT for Top Decay and FCNC Production
3. Top EFT Summary
Outline

1. Top EFT @ NLO Motivation
2. Top EFT for Top Decay and FCNC Production
3. Top EFT Summary
Top facts:

- TH motivations for studying the top quark as a portal to NP remains there.
- More issues/possibilities with the Higgs discovery.
 - What does Higgs measurement tell us about the top?
- Top properties have been measured at high precision level.
 - $t\bar{t} \sim 5\%, V_{tb} \sim 10\%, \text{mass} \sim 0.5\%$,
- Accurate SM predictions from the TH side.
 - Key observables at NNLO in QCD, NLO in EW.
 - Various processes available at NLO in the form of MC generators.

What are TH needs for NP in top physics?
Top facts:

- TH motivations for studying the top quark as a portal to NP remains there.
- More issues/possibilities with the Higgs discovery.
 - What does Higgs measurement tell us about the top?
- Top properties have been measured at high precision level.
 - $\bar{t}t \sim 5\%$, $V_{tb} \sim 10\%$, mass $\sim 0.5\%$, ...
- Accurate SM predictions from the TH side.
 - Key observables at NNLO in QCD, NLO in EW.
 - Various processes available at NLO in the form of MC generators.

What are TH needs for NP in top physics?
Needs for NP study

Apart from high precision predictions for SM observables:

- **EFT** for BSM: A consistent and complete model-independent framework
 - Quantify and constrain deviations from the SM.
 - Connections between top EFT and Higgs EFT.

- **NLO** for BSM top processes
 - Potentially large QCD corrections to top processes.

⇒ EFT @ NLO
Needs for NP study

Apart from high precision predictions for SM observables:

- **EFT** for BSM: A consistent and complete model-independent framework
 - Quantify and constrain deviations from the SM.
 - Connections between top EFT and Higgs EFT.

- **NLO** for BSM top processes
 - Potentially large QCD corrections to top processes.

⇒ **EFT @ NLO**
Effective Field Theory parametrizes unknown interactions in a model-independent way, by

- Integrating out heavy states.

\[\mathcal{L}_{\text{Eff}} = \mathcal{L}_{\text{SM}} + \sum_i \frac{C_i^{(6)}}{\Lambda^2} O_i^{(6)} + \sum_i \frac{C_i^{(8)}}{\Lambda^4} O_i^{(8)} + \cdots \]

...an expansion of NP effects in $1/\Lambda^2$.
EFT

- Well-defined field theory, has full SM gauge symmetry.
- Provides guidance to NP. Leading effects are parametrized by 59 dimension-six operators.
- Consistent global analyses can be performed to constrain NP.
- Radiative corrections can be consistently included. Predictions can be systematically improved. (Can go to higher order in α_s, $1/\Lambda^2$, . . .)

$$\mathcal{O}(\alpha_s) + \mathcal{O}\left(\frac{1}{\Lambda^2}\right) + \mathcal{O}\left(\frac{\alpha_s}{\Lambda^2}\right) + \cdots$$
Renormalizability

Effective Field Theory contains “non-renormalizable” terms, but it is renormalizable in the modern sense, i.e. order by order in $1/\Lambda^2$.

- In principle need to include all 59 at order $1/\Lambda^2$ to make the calculation renormalizable, — but we have to include them anyway for a global analysis.
Going to NLO is not a trivial task:

- More operators will enter.
- In general there can be mixing effects among them. (i.e. one will renormalize the others)

\[
\frac{dC_i(\mu)}{d\mu} = \gamma_{ij} C_j(\mu)
\]

- A meaningful analysis can only be made by considering them all.

\[
\begin{align*}
O_{\varphi G} &= (\varphi^\dagger \varphi)(G^a_{\mu\nu} G^a_{\mu\nu}) \\
O_{tG} &= y_t g s (\bar{Q}_{\sigma\mu\nu} T^A t_R) \varphi G^I_{\mu\nu} \\
O_{t\varphi} &= (\varphi^\dagger \varphi)(\varphi \bar{Q}) t
\end{align*}
\]
Mixing and global fit

- If a specific (arbitrary) choice of operator coefficients is made at high scales (where one can imagine a full theory to live), many operators become active when evolved to lower scales.
- Constraining one or few “anomalous coupling” at the time is not consistent with the fact that the operators mix and run under RGE equations: they need to be determined via a global fit at a given scale.
- To combine measurements from different processes at different scales (precision/decay/production), the running and mixing effects should be taken into account.
- Consistent global EFT analyses for top physics to be performed at NLO, i.e. considering both operator mixing and genuine short distance QCD effects.
Mixing and global fit

- If a specific (arbitrary) choice of operator coefficients is made at high scales (where one can imagine a full theory to live), many operators become active when evolved to lower scales.

- Constraining one or few “anomalous coupling” at the time is not consistent with the fact that the operators mix and run under RGE equations: they need to be determined via a global fit at a given scale.

- To combine measurements from different processes at different scales (precision/decay/production), the running and mixing effects should be taken into account.

- Consistent global EFT analyses for top physics to be performed at NLO, i.e. considering both operator mixing and genuine short distance QCD effects.
Mixing and global fit

- If a specific (arbitrary) choice of operator coefficients is made at high scales (where one can imagine a full theory to live), many operators become active when evolved to lower scales.
- Constraining one or few “anomalous coupling” at the time is not consistent with the fact that the operators mix and run under RGE equations: they need to be determined via a global fit at a given scale.
- To combine measurements from different processes at different scales (precision/decay/production), the running and mixing effects should be taken into account.
- Consistent global EFT analyses for top physics to be performed at NLO, i.e. considering both operator mixing and genuine short distance QCD effects.
If a specific (arbitrary) choice of operator coefficients is made at high scales (where one can imagine a full theory to live), many operators become active when evolved to lower scales.

Constraining one or few “anomalous coupling” at the time is not consistent with the fact that the operators mix and run under RGE equations: they need to be determined via a global fit at a given scale.

To combine measurements from different processes at different scales (precision/decay/production), the running and mixing effects should be taken into account.

Consistent global EFT analyses for top physics to be performed at NLO, i.e. considering both operator mixing and genuine short distance QCD effects.
Outline

1. Top EFT @ NLO Motivation
2. Top EFT for Top Decay and FCNC Production
3. Top EFT Summary
Full analytical results for top-decay processes at NLO in QCD.

- Strategies for searching and constraining operators in top decay.
 (ongoing with G. Durieux and F. Maltoni)
- $O(\alpha_s)$ mixing of relevant operators.

Fully automatic calculation of FCNC top-production in the framework of MG5_aMC@NLO (1405.0301)

(ongoing with C. Degrande, F. Maltoni, J. Wang)

Eventually the full EFT@NLO framework for top, automatic in aMC@NLO, global analysis, etc...
Top decay at NLO

- Main decay channel $t \rightarrow bW$.

 W-helicity: $F_+ : F_0 : F_- \sim 0 : 0.7 : 0.3$ in the SM

- FCNC decay $t \rightarrow uZ$, $t \rightarrow u\gamma$, $t \rightarrow ug$, $t \rightarrow uh$.

 $BR \approx 10^{-13} \sim 10^{-16}$ in the SM

- 3-body decay $t \rightarrow bl\nu$, $t \rightarrow ull$, with contact interactions.
One has to keep in mind that
- New operators enter at NLO;
- They mix into the tree level operators.

$t \rightarrow bW$

$t \rightarrow qX$
We provide the complete set of NLO calculations for top decay:

- Analytical results for differential decay rate, $\frac{d\Gamma}{ds\,d\cos\theta}$, for $t \to bW \to bl\nu$ and $t \to uZ \to ull$.
 - Four-fermion operators included.
 - New contributions at NLO included.

- Provide $t \to uh$. Confirm old results on $t \to ug, u\gamma$.

- Mixing effects.

Complete information needed for model-independent study for top decay at NLO in QCD.
Top EFT for Top Decay and FCNC Production

Operator mixing

\[t \rightarrow bW \]

\[t \rightarrow uh \]

\[
O_{tG} = y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \phi G^A_{\mu\nu}
\]
\[
O_{tW} = y_t g_W (\bar{Q} \sigma^{\mu\nu} \tau^I t) \phi W^I_{\mu\nu}
\]
\[
O_{tB} = y_t g_Y (\bar{Q} \sigma^{\mu\nu} t) \phi B_{\mu\nu}
\]
\[
O_{t\varphi} = -y_t^3 (\varphi^\dagger \varphi) (\bar{Q} t) \phi
\]

\[
\gamma = \frac{2\alpha_s}{\pi} \begin{pmatrix}
\frac{1}{6} & 0 & 0 & 0 \\
\frac{1}{3} & 0 & 0 & 0 \\
9 & 0 & 1 & 0 \\
-4 & 0 & 0 & -1
\end{pmatrix}
\]

\[
O_{uG}^{(13)} = y_t g_s (\bar{q} \sigma^{\mu\nu} T^A t) \phi G^A_{\mu\nu}
\]
\[
O_{uW}^{(13)} = y_t g_W (\bar{q} \sigma^{\mu\nu} \tau^I t) \phi W^I_{\mu\nu}
\]
\[
O_{uB}^{(13)} = y_t g_Y (\bar{q} \sigma^{\mu\nu} t) \phi B_{\mu\nu}
\]
\[
O_{u\varphi}^{(13)} = -y_t^3 (\varphi^\dagger \varphi) (\bar{q} t) \phi
\]

\[
\gamma = \frac{2\alpha_s}{\pi} \begin{pmatrix}
\frac{1}{6} & 0 & 0 & 0 \\
\frac{1}{3} & 0 & 0 & 0 \\
9 & 0 & 1 & 0 \\
-2 & 0 & 0 & -1
\end{pmatrix}
\]
Top-quark FCNC Production

FCNC searches in \(pp \rightarrow tX \)
- Improve constraints on \(utX \).
- Provide information to determine the interaction (ut/ct, L/R)

Typical k factor \(\sim 1.3 \)

\[t \rightarrow \gamma, Z, h \]
Top-quark FCNC Production

- Two (or more) contributions appear at LO. (O_{uB} and O_{uG})
- At NLO in QCD O_{uG} mixes with other operators. Always has to be included.
- Only a global approach on constraining such operators at the same time can be a useful strategy.
Implementation of FCNC operators at NLO in QCD in MG5_aMC@NLO is on going.

- Fully automatic, any process, matched to PS at NLO
- Some preliminary results at NLO for $pp \rightarrow t\gamma$ ($pp \rightarrow t\gamma j$ in SM):

![Graph 1](image1.png)

![Graph 2](image2.png)
Top-quark FCNC Production

Implementation of FCNC operators at NLO in QCD in MG5_aMC@NLO is on going.

- Fully automatic, any process, matched to PS at NLO
- Some preliminary results at NLO for $pp \rightarrow t\gamma$ ($pp \rightarrow t\gamma j$ in SM):

![Graph 1](image1)

![Graph 2](image2)

NLO 13 TeV
Top-quark FCNC Production

A rich set of processes will be studied at NLO(+PS)

- $pp \rightarrow t, t\gamma, tZ, th, tj, e^+ e^- \rightarrow tj$
- $pp \rightarrow t\bar{t}$ with FCNC top decay. (or even $h \rightarrow t^* u$ etc.)
- More possibilities with four-fermion operators...
Outline

1. Top EFT @ NLO Motivation
2. Top EFT for Top Decay and FCNC Production
3. Top EFT Summary
Summary

- EFT is a consistent and complete theoretical approach to NP, where predictions can be systematically improved, several measurements of different processes can be interpreted, and useful information can be obtained by global fits.

- The complete set of analytical results for top-quark decay in EFT is available at NLO in QCD.

- Implementation of top quark FCNC processes in MG5_aMC@NLO is in progress. The full EFT framework at NLO will be available in future.
Thank you!
Backups
Current Limits

- $\bar{q}g \to t$:
 \[\text{Br}(t \to u\bar{g}) < 3.1 \times 10^{-5}, \text{Br}(t \to c\bar{g}) < 1.6 \times 10^{-4} \]
 [ATLAS-CONF-2013-063]

- $\bar{q}g \to tZ$:
 \[\text{Br}(t \to u\bar{g}) < 0.56\%, \text{Br}(t \to c\bar{g}) < 7.12\% \]
 \[\text{Br}(t \to uZ) < 0.51\%, \text{Br}(t \to cZ) < 11.4\% \]
 [CMS PAS TOP-12-021]

- $t \to qZ$:
 \[\text{Br}(t \to q\bar{Z}) < 0.05\% \]
 [CMS-TOP-12-037]

- $t \to qh$:
 \[\text{Br}(t \to c\bar{h}) < 0.56\% \]
 [CMS-PAS-HIG-13-034]
Projections

<table>
<thead>
<tr>
<th></th>
<th>Top decay</th>
<th>Single top</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t \to u Z(\gamma_{\mu})$</td>
<td>3.6×10^{-5}</td>
<td>8.0×10^{-5}</td>
</tr>
<tr>
<td>$t \to u Z(\sigma_{\mu\nu})$</td>
<td>3.6×10^{-5}</td>
<td>2.3×10^{-5}</td>
</tr>
<tr>
<td>$t \to u \gamma$</td>
<td>1.2×10^{-5}</td>
<td>3.1×10^{-6}</td>
</tr>
<tr>
<td>$t \to u g$</td>
<td>$-$</td>
<td>2.5×10^{-6}</td>
</tr>
<tr>
<td>$t \to u H$</td>
<td>5.8×10^{-5}</td>
<td>5.1×10^{-4}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Top decay</th>
<th>Single top</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t \to c Z(\gamma_{\mu})$</td>
<td>3.6×10^{-5}</td>
<td>3.9×10^{-4}</td>
</tr>
<tr>
<td>$t \to c Z(\sigma_{\mu\nu})$</td>
<td>3.6×10^{-5}</td>
<td>1.4×10^{-4}</td>
</tr>
<tr>
<td>$t \to c \gamma$</td>
<td>1.2×10^{-5}</td>
<td>2.8×10^{-5}</td>
</tr>
<tr>
<td>$t \to c g$</td>
<td>$-$</td>
<td>1.6×10^{-5}</td>
</tr>
<tr>
<td>$t \to c H$</td>
<td>5.8×10^{-5}</td>
<td>2.6×10^{-3}</td>
</tr>
</tbody>
</table>

Table 4: 3σ discovery limits for top FCN interactions at LHC, for an integrated luminosity of 100 fb$^{-1}$. The limits are expressed in terms of top decay branching ratios.