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WMAP 9 Data Neff =3.36±0.34. 	

	

S. Weinberg suggests a Goldstone boson (GB) in the 
electroweak sector. It decouples at the muon mass scale, 
and contributes a fraction of 0.39 to Neff . 	

[arXiv:1305.1971]	

	

Constraint from Collider/Astrophysics.	

	

The radial partner σ is rather light (~500 MeV)     	


 gg → H → σσ → (αα)(ππ) 	
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The Model

•

L = (∂µS
†)(∂µS) + µ2S†S − λ(S†S)2 − g(S†S)(Φ†Φ) + Lsm
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• The φ(x) and r(x) will mix

Lm = −
1

2
(φ(x) r(x))

(
2λsm⟨φ⟩2 g⟨r⟩⟨φ⟩
g⟨r⟩⟨φ⟩ 2λ⟨r⟩2

) (
φ(x)

r(x)

)
.

Rotate (φ(x) r(x))T by an angle θ into physical fields H(x) and σ(x).

• The physical masses of the H(x) and σ(x), and the mixing angle are
given by, in the small θ limit

m2
H ≈ 2λsm⟨φ⟩2 ,

m2
σ ≈ 2λ⟨r⟩2 , (1)

θ ≈
g⟨r⟩⟨φ⟩

m2
H − m2

σ

.

• Relevant interactions for θ ≪ 1 and mσ ≪ mH :

LHαα =
θ

⟨r⟩
H (∂µα)(∂

µα) ,

Lσαα =
1

⟨r⟩
σ (∂µα)(∂

µα) , (2)

LHσσ = −
g

2
⟨φ⟩H σ2 .
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Figure 5: (a) Observed and expected limits on the relative production rate for e+e− → Z0h0 →
Z0χ0χ0 (invisible decay) to the SM Higgs production rate at 95% CL as a function of the test
mass mh0 , assuming BR(h0 → χ0χ0) = 100%. The solid curves show the observed limits and
the dot-dashed curves the median expected limits. The dashed and dotted curves show 1σ and
2σ bands of expected limits. (b) The background confidence 1 − CLb as a function of mh0 .
The thick solid curve shows the observed 1 − CLb and the thin solid curve the expectation in
the signal plus background hypothesis. The dot-dashed, dashed and dotted lines show median
1 − CLb, and the 1σ and 2σ bands expected for the background only hypothesis, respectively.
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Constraints

• Search for invisibly decaying Higgs boson. The σ can be produced
in the place of H but with a mixing angle θ (mH close to 1 GeV):

σ(Zσ) ≈ σ(ZHsm) × θ2

Using
σ(Zh)B(h → χ0χ0)

σ(ZHsm)
<∼ 10−4 (OPAL)

we can constrain θ <∼ 0.01.

• Invisible width of the Higgs boson. The Higgs can decay via

H → αα, H → σσ → 4α

Γ(H → αα) =
1

32π

m3
H

⟨φ⟩2
⟨φ⟩2

⟨r⟩2
θ2, Γ(H → σσ) ≈

1

32π

m3
H

⟨φ⟩2
⟨φ⟩2

⟨r⟩2
θ2

The global fit to the observed Higgs boson restricts the nonstandard decay to
be less than about 22% (∼ 1.2 MeV). So we have

θ
⟨φ⟩
⟨r⟩

≤ 0.043 .
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π)2

+
|⃗k|2 |⃗l|2 − 2|⃗k · l⃗|2

(|⃗k|2 + m2
π)(|⃗l|2 + m2

π)
+ ...

}

, (18)

with q = q1 + q2. Here, απ ≡ (2mNf/mπ)2/(4π) ≈ 15
with f ≈ 1 being the pion-nucleon “fine-structure” con-
stant. The (2!)2 factor arises from the Wick contraction
of the two Goldstone bosons in the final state. Consider-
ing only the leading terms in the (T/mN ) expansion of
the amplitude squared and neglecting the pion mass mπ

in the curly brackets, the phase space integral in Eq. (15)
can be performed analytically as for the axion or neutrino
emission cases [31]. We estimate the energy loss rate due
to nn → nnαα in the non-degenerate (ND) case to be

QND
nn→nnαα ≃

1056
√
π

(2π)6

(

3 −
2β

3

)

n2
B

×
(

gN mN

m2
rm2

ϕ

)2 (

2mNf

mπ

)4 T 9.5

m4.5
N

. (19)

The β term arises from the averaging of the (k⃗ · l⃗)
term over the nucleon scattering angle and we find that
β = 2.0938. In the large mr limiting case, the very strong
temperature dependence arises from the presence of the
(q1 · q2)2/m4

r term in the amplitude squared because of
the ∂µα∂µαf̄ f type coupling [32] in Eq. (4). In com-
parison, in the ND limit the temperature dependence of
the energy loss rate is T 3.5 and T 5.5 for the axion and
the neutrino emission cases, respectively [30, 31]. We
compare the emissivity due to the Goldstone bosons

ϵND
nn→nnαα =

QND
nn→nnαα

ρ

≃
6.65 · 10−22 GeV

(ρ/3 · 1014 g/cm3)
g2

N

( mr

500 MeV

)−4
(

T

30 MeV

)9.5

,

(20)

with the emissivity bound in Eq. (5), which should be
applied at ρ = 3 · 1014 g/cm3 and T = 30 MeV [14]. We
obtain a constraint of

g2
N

( mr

500 MeV

)−4
! 1.1 · 10−5 , (21)

on the coupling of Weinberg’s Goldstone bosons to nu-
cleons through the Higgs. This implies for the coupling
constant (cf. Eq. (1)) to the Higgs that

|g| ! 0.011
( mr

500 MeV

)2
, (22)

from the relation gN = (2/27)nh g, with the number of
heavy quark flavours nh = 4. One sees that the super-
nova bound is competitive and complementary to the col-
lider bound g ! 0.018 (0.011), which is insensitive to the
mr value. We have checked the pion mass effects on the

energy loss rate by keeping the m2
π in the denominators in

Eq. (18) and performing the phase space integrals using
the Monte Carlo routine VEGAS [33]. We find that the
reduction is 12% at T = 30 MeV and only 5% at T = 80
MeV, milder than that in the axion emission case. It re-
mains to estimate the emissivity for more general cases,
i.e. for smaller mr values, and including the higher-order
terms in the (T/mN) expansion of the amplitude squared
(Eq. (18)), to find the modifications of this bound.

In conclusion, we have determined the allowed range
for the coupling constant g in dependence of mr, the
mass of the radial field r(x) in Weinberg’s extended
Higgs model, in which new Goldstone bosons may be
masquerading as fractional cosmic neutrinos. In the
conservative large mr limit, we have estimated the en-
ergy loss rates in post-collapse supernova cores due to
Goldstone boson emission in different channels includ-
ing the e+e− annihilation, photon scattering and nuclear
bremsstrahlung processes. We present our main result
in Eq. (22), obtained by confronting our estimate for
the nuclear bremsstrahlung processes with the well es-
tablished emissivity bound from the Supernova 1987A
observations and simulations. Even in the conservative
limit where mr is large enough compared with the Gold-
stone boson energies attainable at the temperature in the
post-collapse supernova core, our bound is highly com-
petitive to that derived from collider experiments. In
the future, if the ILC can indeed improve the collider
bound to |g| < 0.0015, Weinberg’s estimate would re-
quire mr < 274 MeV in order that the Goldstone bosons
contribute 0.39 to Nν . In this case our bound is at least
as good as |g| < 0.0033, still competitive. Technical de-
tails, investigation of more general cases, as well as other
astrophysical constraints will be presented in a following
work [12].
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( mr

500 MeV

)2
, (22)

from the relation gN = (2/27)nh g, with the number of
heavy quark flavours nh = 4. One sees that the super-
nova bound is competitive and complementary to the col-
lider bound g ! 0.018 (0.011), which is insensitive to the
mr value. We have checked the pion mass effects on the

energy loss rate by keeping the m2
π in the denominators in

Eq. (18) and performing the phase space integrals using
the Monte Carlo routine VEGAS [33]. We find that the
reduction is 12% at T = 30 MeV and only 5% at T = 80
MeV, milder than that in the axion emission case. It re-
mains to estimate the emissivity for more general cases,
i.e. for smaller mr values, and including the higher-order
terms in the (T/mN) expansion of the amplitude squared
(Eq. (18)), to find the modifications of this bound.

In conclusion, we have determined the allowed range
for the coupling constant g in dependence of mr, the
mass of the radial field r(x) in Weinberg’s extended
Higgs model, in which new Goldstone bosons may be
masquerading as fractional cosmic neutrinos. In the
conservative large mr limit, we have estimated the en-
ergy loss rates in post-collapse supernova cores due to
Goldstone boson emission in different channels includ-
ing the e+e− annihilation, photon scattering and nuclear
bremsstrahlung processes. We present our main result
in Eq. (22), obtained by confronting our estimate for
the nuclear bremsstrahlung processes with the well es-
tablished emissivity bound from the Supernova 1987A
observations and simulations. Even in the conservative
limit where mr is large enough compared with the Gold-
stone boson energies attainable at the temperature in the
post-collapse supernova core, our bound is highly com-
petitive to that derived from collider experiments. In
the future, if the ILC can indeed improve the collider
bound to |g| < 0.0015, Weinberg’s estimate would re-
quire mr < 274 MeV in order that the Goldstone bosons
contribute 0.39 to Nν . In this case our bound is at least
as good as |g| < 0.0033, still competitive. Technical de-
tails, investigation of more general cases, as well as other
astrophysical constraints will be presented in a following
work [12].
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therein and in Ref. [9]. In the future, the International
Linear Collider (ILC) may constrain the branching ratio
of Higgs invisible decays to < 0.4− 0.9% [10], improving
the bound on |g| by a factor of 5 − 7.

From the mixing term −g ⟨ϕ⟩ ⟨r⟩ϕr and the interaction
term (1/ ⟨r⟩) r ∂µα∂µα in the Lagrangian (Eq. (3)) as
well as the SM Higgs-fermion coupling −mfϕf̄ f/⟨ϕ⟩, an
effective interaction between the Goldstone bosons and
any SM fermion f ,

+ g mf f̄ f ϕr ∂µα ∂
µα , (4)

is produced. In the early universe, the Goldstone bosons
remain in thermal equilibrium via the processes αα ↔
f̄ f , where f are SM fermions in the thermal bath. If the
Goldstone bosons freeze out before the muon annihilation
occurs, they contribute about 0.39 to the effective num-
ber of neutrino types in the era before recombination.
Weinberg has made a crude estimate which shows that
for g = 0.005 the Goldstone bosons decouples at muon
annihilation for mr ≈ 500 MeV (see also Ref. [11]). While
a more accurate calculation is underway [12], in this work
we will use mr = 500 MeV as a benchmark.

Now we turn to supernova cooling. The observed du-
ration of neutrino burst events from Supernova 1987A in
several detectors confirmed the standard picture of neu-
trino cooling of post-collapse supernova. In the second
phase of neutrino emission, a light particle which inter-
act even more weakly than neutrinos could lead to more
efficient energy loss and shorten the neutrino burst dura-
tion. Demanding that the novel cooling agent X should
not have affected the total cooling time significantly, an
upper bound on their emissivity can be derived [13, 14]

ϵX ≡
QX

ρ
! 1019 erg ·g−1 ·s−1 = 7.324 ·10−27 GeV , (5)

where QX is the energy loss rate. This bound, dubbed
the ”Raffelt criterion”, is to be applied at typical core
conditions, i.e. a density ρ = 3 · 1014 g/cm3 and a tem-
perature T = 30 MeV. It has been used exhaustively in
the literature to constrain the properties of exotic par-
ticles, notably the axions [15, 16, 17], right-handed neu-
trinos [15], Kaluza-Klein gravitons [18, 19], and unparti-
cles [20] etc. Among all, the self-consistent cooling calcu-
lations and statistical analysis performed for the Kaluza-
Klein gravitions in Ref. [18] demonstrated the reliability
of this simple criterion.

Stellar energy loss due to Goldstone boson pair emis-
sion had been considered for the Compton-like process
[21]. Here, from their effective interaction with the SM
fermions (Eq. (4)), the Goldstone bosons can be pro-
duced in electron-positron pair annihilation e+e− →
αα, in photon scattering γγ → αα and in nuclear
bremsstrahlung processes NN → NNαα. The number
densities of neutron, proton, electron, and electron neu-
trino in the supernova core are determined by the baryon

density nB, charge neutrality and β-equilibrium condi-
tions. The chemical potential of each particle at T = 30
MeV are µn = 971 MeV, µp = 923 MeV, µe = 200 MeV,
and µνe

= 152 MeV, respectively, for a fixed lepton frac-
tion YL = 0.3. The degeneracy parameter for the neutron
is ηn ≡ (µn−mn)/T ≈ 1.05 in this case, corresponding to
neither strongly non-degenerate nor degenerate case. On
the other hand, the electrons are highly degenerate. For
the e+(p1) e−(p2) ↔ α(q1)α(q2) process, the amplitude
squared is

∑

spins

|Me+e−→αα|2 =
16 g2 m2

e (q1 · q2)2
[

(p1 · p2) − m2
e

]

(s − m2
ϕ)2 (s − m2

r)2
,

(6)
where s = (p1 + p2)2 = (q1 + q2)2 is the center-of-mass
(cm) energy squared. The energy loss rate due to this
process is

Qe+e−→αα =
1

2!

∫ 2
∏

j=1

d3q⃗j

(2π)32ωj

∫ 2
∏

i=1

2 d3p⃗i

2Ei (2π)3

×
1

4

∑

spins

|Me+e−→αα|2(2π)4δ4(p1 + p2 − q1 − q2)

× f1f2 (ω1 + ω2) , (7)

where f1(p⃗1) = (e(E1+µe)/T + 1)−1 and f2(p⃗2) =
(e(E2−µe)/T + 1)−1 are the distribution functions for the
positron and the electron, respectively. A symmetry fac-
tor of 1/2! is included for the identical particles in the
final state. In the large mr limit, the r field propagator
can be expanded in powers of (s/m2

r). In this work we use
only the leading term in the expansion, as in Ref. [7]. The
results we will present should thus be regarded as conser-
vative estimates, since all higher terms contribute posi-
tively to the energy loss rate. Performing the d3q⃗1d3q⃗2

integral analytically, we obtain
∫

d3q⃗1

ω1

d3q⃗2

ω2

(q1 · q2)2

m4
r

δ4(p1+p2−q1−q2) =
π

2

(p1 + p2)4

m4
r

,

(8)
analogous to the Lenard’s Identity for the e+e− → νν̄
process [22]. Then following Ref. [23], we define the di-
mensionless function

Uk ≡
1

π2

∫ ∞

0

|p⃗1|2d|p⃗1|
T 3

(

E1

T

)k

f1(p⃗1) , (9)

and Φk similarly, with p⃗1, E1 and f1(p⃗1) replaced by p⃗2,
E2 and f2(p⃗2), respectively. The energy loss rate can
then be expressed as

Qe+e−→αα =
T 11

16π

∑

i,j pairs

Cij (Ui Φj + Φi Uj) , (10)

with C23 = 2, C12 = 1/3, C03 = −1, C01 = C−12 =
−1/3, and C−10 = −2/3. Evaluating the Uk, Φk func-
tions numerically for the typical supernova core condition

g =
✓h�i
hri

m2
H

h�i ⇡ 0.011

gN =
2

27
nhg + · · ·

1

SuperNova Constraint 	


Comments on Weinberg’s PRL paper on “Goldstone Boson as Fractional Cosmic Neu-
trino” [1] .

Note that Weinberg always used 1
2 coe�cient in front of the kinetic term for both the

complex and real scalar fields. So his choice of h'i ⇡ 247 GeV is self consistent.
However, there are many inconsistent typos everywhere in the paper. Below we list

some corrected expressions.
The expression should be (µ2 � g

2h'i
2)/� in the 4th line after (3).

In (4), hri =
q
m2

r/�. In (5), he missed a factor of 2 on the right hand side,

tan 2✓ =
2gh�ihri
m2

' �m2
r

.

This is consistent with the small ✓ limit based on the amplitude �gh'ihri�0r0, given in
the paragraph before (5), and then, ✓ ⇡ gh�ihri

m2
'�m2

r
.

In (6),

�'!2↵ =
g2h�i2m3

'

32⇡(m2
' �m2

r)
.

The identical particle e↵ect in the final phase space has been included.
The constraint on g discussed after (6) is therefore relaxed, so |g| < 0.02.
Throughout the text, the interaction of r0↵↵ should be (1/hri)r0@µ↵0@µ↵0 but Weinberg

incorrectly gave an incorrect factor 1
2 .

In (7),

� gmF

m2
rm

2
'

@µ↵
0@µ↵0F̄F .

In (16),

�'!2w =
1

16⇡

 
fgh�ihri
m2

' �m2
r

!2 ⇣
m2

' � 4m2
w

⌘ 3
2 .

The exponent 3
2 (di↵erent from Weinberg) reflects the p-wave nature of the decay ampli-

tude.
Weinberg did not work out the case the Golstone boson gets decoupled at the tem-

perature below me (but above the atom formation). If so, we find out that 1

T⌫

T�
=

T>me

T<me

=
✓
6

13

◆ 4
3

, T↵ = T� .

The consequence is that the neutrino temperature is di↵erent from (higher than) the
prediction of the standard model. Conventionally, the e↵ective neutrino species number

1
Note thate (1� +

1
2↵

)T 3
<me

⇡ (1� +
1
2↵

+

7
4 e
)T 3

>me
across the me threshold. Also, the Standard Model

result is recoved by dropping the

1
2↵

. Weinberg studied the case of the decoupling temperature above

mµ instead, and

⇣
1 +

7
4 e

+

7
4µ

+ 3⇥ 7
8 ⌫

⌘
T 3
↵z }| {

T 3
>mµ

=

�
1 +

7
4 e

+ 3⇥ 7
8 ⌫

�
T 3
⌫z }| {

T 3
<mµ

, (

T↵
T⌫

)

3
=

43
57 .

1
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Decays of
the σ field

• Decays in
to e+e− , µ

+µ− , γγ.

• Decay into pion pairs. T
he only hadron

that σ can decay is pions:

Γ(σ → ππ) = θ
2

3

32π

m
3
σ

⟨φ⟩2

(
1 −

4m
2
π

m2
σ

)1/2
(

1 +
2m

2
π

m2
σ

)2

.

• Decay into αα
Γ(σ → αα) =

m
3
σ

32π⟨r⟩
2
.

• Define the ratio for visibilit
y of the σ:

f ≡
Γ(σ → ππ)

Γ(σ → αα)
= 3 θ

2 ⟨r⟩2

⟨φ⟩2

(
1 −

4m
2
π

m2
σ

)1/2
(

1 +
2m

2
π

m2
σ

)2
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C
onstraints

•
Search

for
invisibly

decaying
H
iggs

boson.
T
he

σ
can

b
e
produced

in
the

place
of

H
but

w
ith

a
m
ixing

angle
θ
(m

H
close

to
1
G
eV

):

σ
(Z

σ
)
≈

σ
(Z

H
sm

)×
θ 2

U
sin

g

σ
(Z

h
)B

(h
→

χ
0
χ
0
)

σ
(Z

H
sm

)

<∼
10 −

4
(O

P
A
L
)

w
e
can

constrain
θ
<∼

0.01.

•
Invisible

w
idth

of
the

H
iggs

boson.
T
he

H
iggs

can
decay

via

H
→

α
α
,

H
→

σ
σ
→

4α

Γ
(H

→
α
α
)
=

132π m
3H

⟨φ⟩ 2 ⟨φ⟩ 2

⟨r⟩ 2
θ 2

,
Γ
(H

→
σ
σ
)
≈

132π m
3H

⟨φ⟩ 2 ⟨φ⟩ 2

⟨r⟩ 2
θ 2

T
h
e
glob
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fi
t
to

th
e
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H
iggs

b
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th
e
n
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d
ard

d
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b
e
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th
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ou

t
22%

(∼
1.2

M
eV

).
S
o
w
e
h
ave

θ ⟨φ⟩⟨r⟩ ≤
0.043

.

g = ✓h�ihri m 2
Hh�i 2 ⇡

0.011

g
N = 2

27 n
h g + · · ·
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Decays of the σ field

• Decays into e+e−, µ+µ−, γγ.

• Decay into pion pairs. The only hadron that σ can decay is pions:

Γ(σ → ππ) = θ2 3

32π

m3
σ

⟨φ⟩2

(
1 −

4m2
π

m2
σ

)1/2 (
1 +

2m2
π

m2
σ

)2

.

• Decay into αα

Γ(σ → αα) =
m3

σ

32π⟨r⟩2
.

• Define the ratio for visibility of the σ:

f ≡
Γ(σ → ππ)

Γ(σ → αα)
= 3 θ2 ⟨r⟩2

⟨φ⟩2

(
1 −

4m2
π

m2
σ

)1/2 (
1 +

2m2
π

m2
σ

)2
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the event cross sections at the LHC-8 and LHC-14 for
hri ¼ 3–7 TeV. We normalize the uncut gluon fusion cross
sections and the associated production cross sections to
those given in the LHC Physics Web site [14]. For both
the pions and charged lepton, we impose the same pT
and rapidity cuts as pT > 30 GeV and jηj < 2.5, respec-
tively. We show the cross sections after the cuts in
Table I. We have multiplied the cross sections by the
branching ratios BðH → σσÞ × Bðσ → ππÞ × Bðσ → ααÞ×
2 to the Higgs boson decay, and BðW → lνÞ ¼ 2=9 to the
W boson decay. At the LHC-8 with about 20 fb−1, the
gluon fusion can produce a handful of events against
the background if the two pions can be resolved.
Nevertheless, if the pions cannot be resolved the associated
production only has a cross section of order Oð0.05Þ fb,
which may not be enough for detection. At the LHC-14
with a projected luminosity ofOð100Þ fb−1, both the gluon
fusion and associated production give sizable event rates
whether or not the two pions can be resolved. Here, as men-
tioned above, the most important experimental issue is

resolving the two pions. Although our rough estimate of
angular separation by the pixel and tracking detectors indi-
cates one may be able to resolve the pions, difficulties com-
ing from the pileup, pattern recognition, and track
reconstruction post real challenges for our experimentalists.
A proper detector simulation is called for before any
realistic conclusion can be drawn.
To summarize, the logical possibility of the existence of

a hidden sector of Goldstone bosons masquerading as frac-
tional cosmic neutrinos and communicate to our visible
world through the Higgs portal as suggested recently by
Weinberg [2] is explored further phenomenologically here.
We have studied the constraints from the invisible Higgs
search at LEP-II, the invisible Higgs width derived from
global fittings using all the LHC signal strength data,
and the condition of muon decoupling from evolution of
our Universe. We also studied Higgs decays into a pair
of σ and its various decay modes. This interesting idea
of Goldstone bosons as cosmic neutrino impostors can
be tested by searching for the process of gg → H → σσ →
ðππÞðααÞ and the associated production WH →
ðlνÞðσσÞ → ðlνÞðππ þ ααÞ at the LHC-8 and LHC-14.
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ing out the correct formula for σ decays into pion pair.
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TABLE I. Cross sections in fb for the gluon fusion process
pp → H → σσ → ðππÞðααÞ and the associated process pp →
WH → ðlνÞðσσÞ → ðlνÞðππ þ ααÞ at the LHC-8 and LHC-14
with the selection cuts described in the text. We choose
mσ ¼ 500 MeV.

Cross section
(fb) LHC-8

Cross section
(fb) LHC-14

hri (TeV) Bðσ → ππÞ
Gluon
fusion WH

Gluon
fusion WH

3 3.72 × 10−3 0.16 0.013 0.39 0.024
4 6.58 × 10−3 0.27 0.022 0.68 0.043
5 1.02 × 10−2 0.42 0.034 1.05 0.067
6 1.46 × 10−2 0.60 0.049 1.50 0.095
7 1.97 × 10−2 0.80 0.065 2.00 0.13
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Collider Signatures

• Nonstandard decay of the Higgs is less than about 20%. Take

B(H → σσ) ≈ 10% and B(σ → ππ) ≈ 20% we can have

gg → H → σσ → (ππ) (αα)

• The cross section at the LHC-8 would be

σ(gg → H) × B(H → σσ) × B(σ → ππ) × B(σ → αα) ≈ 19 pb × 0.1 × 0.2 × 0.8

≈ 300 fb

At the LHC-14, it would be 2.8 times as much.

• Difficulties: the angular separation between the two pions is very

small: 1/60 ∼ 2mσ/pTσ ≈ 0.015. It appears to be a microjet having

two pions, and experimentally like a τ jet.
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