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Where Do We Stand?

• Exciting Time in ν Physics: recent hints/evidences of large θ13 from T2K, MINOS, Double 
Chooz, Daya Bay and RENO

• Latest 3 neutrino global analysis (including recent results from reactor experiments and T2K):
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Capozzi, Fogli, Lisi, Marrone, Montanino, Palazzo (2013, updated March 2014)

➡ Evidence of θ13 ≠ 0 
➡ hints of θ23 ≠ π/4 
➡ expectation of Dirac CP phase δ 

➡ no clear preference for hierarchy
➡ Majorana vs Dirac
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TABLE I: Results of the global 3ν oscillation analysis, in terms of best-fit values and allowed 1, 2 and 3σ ranges for the 3ν
mass-mixing parameters. See also Fig. 3 for a graphical representation of the results. We remind that ∆m2 is defined herein as
m2

3− (m2
1 +m2

2)/2, with +∆m2 for NH and −∆m2 for IH. The CP violating phase is taken in the (cyclic) interval δ/π ∈ [0, 2].
The overall χ2 difference between IH and NH is insignificant (∆χ2

I−N = −0.3).

Parameter Best fit 1σ range 2σ range 3σ range

δm2/10−5 eV2 (NH or IH) 7.54 7.32 – 7.80 7.15 – 8.00 6.99 – 8.18

sin2 θ12/10
−1 (NH or IH) 3.08 2.91 – 3.25 2.75 – 3.42 2.59 – 3.59

∆m2/10−3 eV2 (NH) 2.43 2.37 – 2.49 2.30 – 2.55 2.23 – 2.61

∆m2/10−3 eV2 (IH) 2.38 2.32 – 2.44 2.25 – 2.50 2.19 – 2.56

sin2 θ13/10−2 (NH) 2.34 2.15 – 2.54 1.95 – 2.74 1.76 – 2.95

sin2 θ13/10
−2 (IH) 2.40 2.18 – 2.59 1.98 – 2.79 1.78 – 2.98

sin2 θ23/10
−1 (NH) 4.37 4.14 – 4.70 3.93 – 5.52 3.74 – 6.26

sin2 θ23/10−1 (IH) 4.55 4.24 – 5.94 4.00 – 6.20 3.80 – 6.41

δ/π (NH) 1.39 1.12 – 1.77 0.00 – 0.16 ⊕ 0.86 – 2.00 —

δ/π (IH) 1.31 0.98 – 1.60 0.00 – 0.02 ⊕ 0.70 – 2.00 —

IV. COVARIANCES OF OSCILLATION PARAMETERS

In this Section we show the allowed regions for selected couples of oscillation parameters, and discuss some interesting
correlations.
Figure 4 shows the global fit results in the plane charted by (sin2 θ23, ∆m2), in terms of regions allowed at 1, 2

and 3σ (∆χ2 = 1, 4 and 9). Best fits are marked by dots, and it is understood that all the other parameters are
marginalized away. From left to right, the panels refer to increasingly rich datasets, as previously discussed: LBL
accelerator + solar + KamLAND data (left), plus SBL reactor data (middle), plus SK atmospheric data (right). The
upper (lower) panels refer to normal (inverted) hierarchy. This figure shows the instability of the θ23 octant discussed
above, in a graphical format which is perhaps more familiar to most readers. It is worth noticing the increasing
(sin2 θ23, ∆m2) covariance for increasingly nonmaximal θ23 (both in first and in the second octant), which contributes
to the overall ∆m2 uncertainty. In this context, the measurement of ∆m2 at SBL reactor experiments (although
not yet competitive with accelerator and atmospheric experiments [15]) may become relevant in the future: being
θ23-independent, it will help to break the current correlation with θ23 and to improve the overall ∆m2 accuracy in
the global fit.
Figure 5 shows the allowed regions in the plane charted by (sin2 θ23, sin

2 θ13). Let us consider first the left panels,
where a slight negative correlation between these two parameters emerges from LBL appearance data, as discussed in
[4]. The contours extend towards relatively large values of θ13, especially in IH, in order to accommodate the relatively
strong T2K appearance signal [17]. However, solar + KL data provide independent (although weaker) constraints on
θ13 and, in particular, prefer sin2 θ13 ∼ 0.02 in our analysis. This value, being on the “low side” of the allowed regions
of θ13, leads (via anticorrelation) to a best-fit value of θ23 on the “high side” (i.e., in the second-octant) for both NH
and IH. However, when current SBL reactor data are included in the middle panels, a slightly higher value of θ13 is
preferred (sin2 θ13 " 0.023) with very small uncertainties: this value is high enough to flip the θ23 best fit from the
second to the first octant in NH, but not in IH.
It is useful to compare the left and middle panels of Fig. 5 with the analogous ones of Fig. 1 from our previous

analysis [4]: the local minima in the two θ23 octants are now closer and more degenerate. This fact is mainly due to
the persisting preference of T2K disappearance data for nearly maximal mixing [19], which is gradually diluting the
MINOS preference for nonmaximal mixing [23]. Moreover, accelerator data are becoming increasingly competitive
with atmospheric data in constraining θ23 [19]. Therefore, although we still find (as in previous works [2, 4]) that
atmospheric data alone prefer θ23 < π/4, the overall combination with current non-atmospheric data (right panels
of Fig. 5) makes this indication less significant than in previous fits (compare, e.g., with Fig. 1 in [4]), especially in
IH where non-atmospheric data now prefer the opposite case θ23 > π/4. The fragility of the θ23 octant fit (with
and without atmospheric neutrinos) was also noted in the recent analysis [6]. In conclusion, the overall indication
for θ23 < π/4 in both NH and IH (right panels of Fig. 5) is currently weaker than in our previous analysis [4]; in
particular, its significance reaches only ∼ 1.6σ ( 90% C.L.) in NH, while it is < 1σ in IH. Further accelerator neutrino
data will become increasingly important in assessing the status of θ23 in the near future.



Theoretical Challenges

(i)  Absolute mass scale:  Why mν << mu,d,e? 
• seesaw mechanism: most appealing scenario ⇒ Majorana

• UV completions of Weinberg operators HHLL
‣ Type-I seesaw: exchange of singlet fermions 

‣ Type-II seesaw: exchange of weak triplet scalar

‣ Type-III seesaw: exchange of weak triplet fermion
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Seesaw model has been previously shown [11] to induce a non-unitary leptonic mixing
matrix. In this work we will explicitly analyze the issue for the other types of Seesaw
models.
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Figure 1: The three generic realizations of the Seesaw mechanism, depending on the
nature of the heavy fields exchanged: SM singlet fermions (type I Seesaw) on the left,
SM triplet scalars (type II Seesaw) and SM triplet fermions (type III Seesaw) on the
right.
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Minkowski, 1977; Yanagida, 1979; 
Glashow, 1979; 
Gell-mann, Ramond, Slansky,1979; 
Mohapatra, Senjanovic, 1979; 

 Lazarides, 1980; Mohapatra, Senjanovic, 1980

Foot, Lew, He, Joshi, 1989; Ma, 1998

NR: SU(3)c x SU(2)w x U(1)Y 
~(1,1,0)

Δ: SU(3)c x SU(2)w x U(1)Y 
~(1,3,2)

ΣR: SU(3)c x SU(2)w x U(1)Y 
~(1,3,0)
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Theoretical Challenges

(i) Absolute mass scale:  Why mν << mu,d,e? 
• seesaw mechanism: most appealing scenario ⇒ Majorana

• GUT scale (type-I, II) vs TeV scale (type-III, inverse seesaw)
• TeV scale new physics (SUSY, extra dimension, U(1)´) ⇒ Dirac or Majorana

(ii) Flavor Structure: Why neutrino mixing large while quark mixing small?
• neutrino anarchy: no parametrically small number

• near degenerate spectrum, large mixing
• predictions strongly depend on choice of statistical measure
• still alive and kicking

• family symmetry: there’s a structure, expansion parameter (symmetry effect)
• mixing result from dynamics of underlying symmetry
• for leptons only (normal or inverted) 
• for quarks and leptons: quark-lepton connection ↔ GUT (normal)

• Alternative?
• In this talk: assume 3 generations, no LSND/MiniBoone/Reactor Anomaly
• These scenarios have drastically different predictions
• precision measurements allow for distinguishing models

4

Hall, Murayama, Weiner (2000); 
de Gouvea, Murayama (2003)

 de Gouvea, Murayama (2012)
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Origin of Mass Hierarchy and Mixing

• In the SM: 22 physical quantities which seem unrelated
• Question arises whether these quantities can be related
• No fundamental reason can be found in the framework of SM
• less ambitious aim ⇒ reduce the # of parameters by imposing symmetries

• SUSY Grand Unified Gauge Symmetry
• GUT relates quarks and leptons: quarks & leptons in same GUT multiplets

• one set of Yukawa coupling for a given GUT multiplet ⇒ intra-family relations

• seesaw mechanism naturally implemented

• Family Symmetry 
• relate Yukawa couplings of different families

• inter-family relations ⇒ further reduce the number of parameters

5

⇒ Experimentally testable correlations among physical observables
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Origin of Flavor Mixing and Mass Hierarchy

• Several models have been constructed based on 
• GUT Symmetry [SU(5), SO(10)] ⊕ Family Symmetry GF   

• Family Symmetries GF based on continuous groups:
• U(1) 
• SU(2) 
• SU(3) 

• Recently, models based on discrete family symmetry groups have been constructed 
• A4 (tetrahedron)
• T´ (double tetrahedron)
• S3 (equilateral triangle)
• S4 (octahedron, cube)
• A5 (icosahedron, dodecahedron)
• ∆27 
• Q4 
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The Horizontal Symmetry

• Three families are the

same under vertical

symmetry; yet

different under

horizontal symmetry

• Zeros in the mass

matrices are protected

by a family symmetry

SU(2)F

uuu
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sss

ttt

bbb

!!!µµµ
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ccc
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SU(2)F

SU(10)GUT Symmetry
SU(5), SO(10), ...

family symmetry 
(T′, SU(2), ...)

  Motivation:  Tri-bimaximal 
(TBM) neutrino mixing

Discrete gauge anomaly: Araki, Kobayashi, Kubo, Ramos-
Sanchez, Ratz, Vaudrevange (2008)

Anomaly-free discrete R-symmetries: simultaneous 
solutions to mu problem and proton decay problem, 
naturally small Dirac neutrino mass, M.-C.C, M. Ratz, C. 
Staudt, P. Vaudrevange, (2012); M.-C.C, M. Ratz, A. 
Trautner (2013)
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Tri-bimaximal Neutrino Mixing

• Tri-bimaximal Mixing Pattern 

• General approach:

• PMNS = LO prediction (TBM, BM, ...) + corrections

• corrections:  

L. Wolfenstein (1978); Harrison, Perkins, Scott (1999)

I. INTRODUCTION

The measurements of neutrino oscillation parameters have entered a precision era. The global

fit to current data from neutrino oscillation experiments give the following best fit values and 2⇧

limits for the mixing parameters [1],

sin2 ⇤12 = 0.30 (0.25� 0.34), sin2 ⇤23 = 0.5 (0.38� 0.64), sin2 ⇤13 = 0 (< 0.028) . (1)

These values for the mixing parameters are very close to the values arising from the so-called

“tri-bimaximal” mixing (TBM) matrix [2],

UTBM =

�
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2/3 1/

⇧
3 0
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⌥
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3 �1/
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1/6 1/
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3 1/
⇧
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⇥

⌃⌃⌃⌅
, (2)

which predicts sin2 ⇤atm, TBM = 1/2 and sin ⇤13,TBM = 0. In addition, it predicts sin2 ⇤⇥,TBM = 1/3

for the solar mixing angle. Even though the predicted ⇤⇥,TBM is currently still allowed by the

experimental data at 2⇧, as it is very close to the upper bound at the 2⇧ limit, it may be ruled out

once more precise measurements are made in the upcoming experiments.

It has been pointed out that the tri-bimaximal mixing matrix can arise from a family symmetry

in the lepton sector based on A4 [3] , which is a group that describes the even permutations of

four objects and it has four in-equivalent representations, 1, 1⇤, 1⇤⇤ and 3. However, due to its lack

of doublet representations, CKM matrix is an identity in most A4 models. In addition, to explain

the mass hierarchy among the charged fermions, one needs to resort to additional symmetry. It is

hence not easy to implement A4 as a family symmetry for both quarks and leptons [4].

In this letter, we consider a di⇥erent finite group, the double tetrahedral group, (d)T , which is a

double covering of A4. (For a classification of all finite groups up to order 32 that can potentially

be a family symmetry, see [5]). Because it has the same four in-equivalent representations as in

A4, the tri-bimaximal mixing pattern can be reproduced. In addition, (d)T has three in-equivalent

doublets, 2, 2⇤, and 2⇤⇤, which can be utilized to give the 2 + 1 representation assignments for the

quarks [6]. In the context of SU(2) flavor group, this assignment has been known to give realistic

quark mixing matrix and mass hierarchy [7]. Utilizing (d)T as a family symmetry for both quarks

and leptons has been considered before in non-unified models [8, 9]. In Ref. [8], both quarks

and leptons (including the neutrinos) have 2 ⇤ 1 representation assignments under (d)T , and the

prediction for the solar mixing angle is ⌅ 10�3, which is in the region of small mixing angle solution

that has been ruled out by SNO and KamLAND. A recent attempt in [9] generalizes the (d)T to
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{ higher order terms in super potential (family symmetry)
contributions from charged lepton sector (GUT symmetry)
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Non-Abelian Finite Family Symmetry A4

• TBM mixing matrix: can be realized with finite group family 
symmetry based on A4

•A4:  even permutations of 4 objects
      S: (1234) → (4321)

      T: (1234) → (2314)

•Group of order 12
• Invariant group of tetrahedron

8

Ma, Rajasekaran (2001); Babu, Ma, Valle (2003); ...
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Invariant Group of Tetrahedron

T: (1234) → (2314) S: (1234) →(4321)
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Tri-bimaximal Neutrino Mixing from A4

• fermion charge assignments:

• SM Higgs ~ singlet under A4  

• operators for neutrino masses:

• two scalar (flavon) fields for neutrino sector:

• product rules:
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The Lagrangian of the model is given as follows,
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, (6)

where Mx is the cuto⇤ scale at which the lepton number violation operator HHF F is generated,

while ⇥ is the cuto⇤ scale, above which the (d)T symmetry is exact. The parameters y’s and ⇤’s
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while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation
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We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
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L = 

A4A4

out by describing a well–known model that aims to explain the lepton mixing only with
terms coming from the superpotential. Section 3 is then devoted to the discussion of
the Kähler corrections. Based on the results obtained in sections 3.1 and 3.2 and using
analytic formulae presented in section 3.4, we will argue in section 3.5 that the changes
compared to an analysis without Kähler corrections are substantial, contrary to earlier
statements in the literature [7]. Finally, section 4 summarizes our conclusions.

2 Predictions from the superpotential couplings

We first focus on the predictions of flavor models from the holomorphic couplings of the
theory, i.e. the superpotential. To be specific, we base our discussion on an example
model [8] with an A4 flavor symmetry [9], which serves as a prototype setting leading to
tri–bi–maximal lepton mixing.

Since the following discussion heavily depends on the group structure of A4, we first
review the necessary facts. In particular, these are the possible contractions of fields
transforming under this symmetry. A4 has four inequivalent irreducible representations:
three one–dimensional representations, denoted by 1, 1′ and 1′′, and one triplet, denoted
by 3. The relevant multiplication law is

3⊗ 3 = 1⊕ 1′ ⊕ 1′′ ⊕ 3s ⊕ 3a , (2.1)

where 3s and 3a denote the symmetric and the antisymmetric triplet combinations,
respectively. In terms of the components of the two triplets, a and b,

(a⊗ b)
1

= a1 b1 + a2 b3 + a3 b2 , (2.2a)

(a⊗ b)
1′ = a3 b3 + a1 b2 + a2 b1 , (2.2b)

(a⊗ b)
1′′ = a2 b2 + a1 b3 + a3 b1 , (2.2c)

(a⊗ b)
3s

=
1√
2





2a1 b1 − a2 b3 − a3 b2
2a3 b3 − a1 b2 − a2 b1
2a2 b2 − a1 b3 − a3 b1



 , (2.2d)

(a⊗ b)
3a

= i

√

3

2





a2 b3 − a3 b2
a1 b2 − a2 b1
a3 b1 − a1 b3



 , (2.2e)

where (a⊗ b)
R

indicates that a and b are contracted to the representation R. Note
that there are different conventions for normalizing the triplets 3i in the literature, and
the corresponding factors can be absorbed in the Kähler coefficients.

A well–known example for an A4 tri–bi–maximal model is given by Altarelli et al. [8].
In this model, under A4 the three generations of left–handed lepton doublets transform
as a triplet, L ∼ 3, the right–handed charged leptons, eR, µR and τR, transform as 1,
1′′, and 1′, respectively, and the Higgs fields Hu and Hd transform as pure singlets 1.
Tri–bi–maximal mixing is achieved by the introduction of three flavons: Φν and Φe, both
of which transform as triplets under the A4 symmetry, and a pure A4 singlet ξ ∼ 1. The

3

Altarelli, Feruglio (2005)

Mu-Chun Chen, UC Irvine                                                         Theory of Lepton Flavors                                                      Pheno 2014, Pittsburgh



Tri-bimaximal Neutrino Mixing from A4

• Neutrino Masses: triplet flavon contribution

• Neutrino Masses: singlet flavon contribution

• resulting mass matrix:

11

where

3S =
1

3
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2α3β3 − α1β2 − α2β1

2α2β2 − α1β3 − α3β1
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 3A =
1

2





α2β3 − α3β2

α1β2 − α2β1

α3β1 − α1β3





1 = α1β1 + α2β3 + α3β2

1′ = α3β3 + α1β2 + α2β1

1′′ = α2β2 + α1β3 + α3β1 .

9 Appendix B

In this appendix we discuss the subleading terms of the superpotential wd and how they

correct the VEV alignment. We work along the lines of the appendix B of [6].
The VEVs are shifted from the values

〈ϕS〉 = (vS, vS, vS) , 〈ϕT 〉 = (vT , 0, 0) , 〈η〉 = (v1, 0) , 〈ξ〉 = u , 〈ξ̃〉 = 0 , 〈ξ′ ′〉 = 0

to the values
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where the corrections δvT i, δvS i, δvi, δũ and δu′ ′ are independent of each other. Note
that there also might be a correction to the VEV u, but we do not have to indicate this
explicitly by the addition of a term δu, since u is undetermined at tree-level anyway.

We change the notation in eq. (31) a bit by defining

g3 ≡ 3 g̃2
3 , g4 ≡ −g̃2

4 and g8 ≡ i g̃2
8
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under which the transformation properties of various fields are summarized in Table I, the above

Lagrangian is the most general one. Here the operators that couple to H5T3T3 are not shown in the

above Lagrangian as their contributions can be absorbed into a redefinition of the coupling constant

yt. In addition, we neglect the operator H5FT3�⌥⌥� in LTF since its contribution is negligible.

Also not shown are those that contribute to LFF which can be absorbed into a redefinition of the

parameter u and ⌃0. Note that in principle, viable phenomenology may still be obtained when

more operators are allowed, The additional discrete symmetry that is needed in that case would be

smaller. Nevertheless, more Yukawa coupling constants will be present and the model would not

be as predictive. The Z12 ⇥ Z �
12 symmetry also forbids proton and other nucleon decay operators

to very high orders; it is likely this symmetry might be linked to orbifold compactification in extra

dimensions. Note that, the Z12 ⇥ Z �
12 symmetry also separates the neutrino and charged fermion

sectors, so that the neutrinos only couple to the GTST2 breaking sector. Furthermore, it allows the

45-dim Higgs, �45, to appear only in the operator shown above, and thus is crucial for obtaining

the Georgi-Jarlskog (GJ) relations.

The interactions in L⇥ give the following neutrino mass matrix [3], which is invariant under

GTST2 [9],

M⇥ =
⇤v2

Mx

�

⇧⇧⇧⇤

2⌅0 + u �⌅0 �⌅0

�⌅0 2⌅0 u� ⌅0

�⌅0 u� ⌅0 2⌅0

⇥

⌃⌃⌃⌅
, (13)

and we have absorbed the Yukawa coupling constants by rescaling the VEV’s. This mass matrix

M⇥ is form diagonalizable, i.e. the orthogonal matrix that diagonzlizes it does not depend on the

eigenvalues. Its diagonal form is,

V T
⇥ M⇥V⇥ = diag(u + 3⌅0, u, �u + 3⌅0)

v2
u

Mx
, (14)

where the diagonalization matrix V⇥ is the tri-bimaximal mixing matrix, V⇥ = UTBM given in Eq. 2.

This tri-bimaximal mixing pattern and the mass eigenvalues in the neutrino sector are thus the

same as in all previous analyses in models based on A4 and (d)T , which has been shown to be

consistent with experimental data.

The down type quark and charged lepton masses are generated by LTF . Because the renormal-

izable operator H5FT3 is forbidden by the (d)T symmetry, the generation of b quark mass requires

the breaking of (d)T , which naturally explains the hierarchy between mt and mb. The b quark mass,

and thus the ⇧ mass, is generated upon the breaking of (d)T ⇤ GT and (d)T ⇤ GS. As mb and m⇤

are generated by the same operator, H5FT3⌃�, we obtain the successful b� ⇧ unification relation.

5

under which the transformation properties of various fields are summarized in Table I, the above

Lagrangian is the most general one. Here the operators that couple to H5T3T3 are not shown in the

above Lagrangian as their contributions can be absorbed into a redefinition of the coupling constant

yt. In addition, we neglect the operator H5FT3�⌥⌥� in LTF since its contribution is negligible.

Also not shown are those that contribute to LFF which can be absorbed into a redefinition of the

parameter u and ⌃0. Note that in principle, viable phenomenology may still be obtained when

more operators are allowed, The additional discrete symmetry that is needed in that case would be

smaller. Nevertheless, more Yukawa coupling constants will be present and the model would not

be as predictive. The Z12 ⇥ Z �
12 symmetry also forbids proton and other nucleon decay operators

to very high orders; it is likely this symmetry might be linked to orbifold compactification in extra

dimensions. Note that, the Z12 ⇥ Z �
12 symmetry also separates the neutrino and charged fermion

sectors, so that the neutrinos only couple to the GTST2 breaking sector. Furthermore, it allows the

45-dim Higgs, �45, to appear only in the operator shown above, and thus is crucial for obtaining

the Georgi-Jarlskog (GJ) relations.

The interactions in L⇥ give the following neutrino mass matrix [3], which is invariant under

GTST2 [9],

M⇥ =
⇤v2

Mx

�

⇧⇧⇧⇤

2⌅0 + u �⌅0 �⌅0

�⌅0 2⌅0 u� ⌅0

�⌅0 u� ⌅0 2⌅0

⇥

⌃⌃⌃⌅
, (13)

and we have absorbed the Yukawa coupling constants by rescaling the VEV’s. This mass matrix

M⇥ is form diagonalizable, i.e. the orthogonal matrix that diagonzlizes it does not depend on the

eigenvalues. Its diagonal form is,

V T
⇥ M⇥V⇥ = diag(u + 3⌅0, u, �u + 3⌅0)

v2
u

Mx
, (14)

where the diagonalization matrix V⇥ is the tri-bimaximal mixing matrix, V⇥ = UTBM given in Eq. 2.

This tri-bimaximal mixing pattern and the mass eigenvalues in the neutrino sector are thus the

same as in all previous analyses in models based on A4 and (d)T , which has been shown to be

consistent with experimental data.

The down type quark and charged lepton masses are generated by LTF . Because the renormal-

izable operator H5FT3 is forbidden by the (d)T symmetry, the generation of b quark mass requires

the breaking of (d)T , which naturally explains the hierarchy between mt and mb. The b quark mass,

and thus the ⇧ mass, is generated upon the breaking of (d)T ⇤ GT and (d)T ⇤ GS. As mb and m⇤

are generated by the same operator, H5FT3⌃�, we obtain the successful b� ⇧ unification relation.

5

I. INTRODUCTION

The measurements of neutrino oscillation parameters have entered a precision era. The global

fit to current data from neutrino oscillation experiments give the following best fit values and 2⇥

limits for the mixing parameters [1],

sin2 �12 = 0.30 (0.25� 0.34), sin2 �23 = 0.5 (0.38� 0.64), sin2 �13 = 0 (< 0.028) . (1)

These values for the mixing parameters are very close to the values arising from the so-called

“tri-bimaximal” mixing (TBM) matrix [2],

UTBM =

�

⇧⇧⇧⇤

⌥
2/3 1/

⌅
3 0

�
⌥

1/6 1/
⌅

3 �1/
⌅

2

�
⌥

1/6 1/
⌅

3 1/
⌅

2

⇥

⌃⌃⌃⌅
, (2)

which predicts sin2 �atm, TBM = 1/2 and sin �13,TBM = 0. In addition, it predicts sin2 �⇥,TBM = 1/3

for the solar mixing angle. Even though the predicted �⇥,TBM is currently still allowed by the

experimental data at 2⇥, as it is very close to the upper bound at the 2⇥ limit, it may be ruled out

once more precise measurements are made in the upcoming experiments.

It has been pointed out that the tri-bimaximal mixing matrix can arise from a family symmetry

in the lepton sector based on A4 [3] , which is a group that describes the even permutations of

four objects and it has four in-equivalent representations, 1, 1⇤, 1⇤⇤ and 3. However, due to its lack

of doublet representations, CKM matrix is an identity in most A4 models. In addition, to explain

the mass hierarchy among the charged fermions, one needs to resort to additional symmetry. It is

hence not easy to implement A4 as a family symmetry for both quarks and leptons [4].

In this letter, we consider a di�erent finite group, the double tetrahedral group, (d)T , which is a

double covering of A4. (For a classification of all finite groups up to order 32 that can potentially

be a family symmetry, see [5]). Because it has the same four in-equivalent representations as in

A4, the tri-bimaximal mixing pattern can be reproduced. In addition, (d)T has three in-equivalent

doublets, 2, 2⇤, and 2⇤⇤, which can be utilized to give the 2 + 1 representation assignments for the

quarks [6]. In the context of SU(2) flavor group, this assignment has been known to give realistic

quark mixing matrix and mass hierarchy [7]. Utilizing (d)T as a family symmetry for both quarks

and leptons has been considered before in non-unified models [8, 9]. In Ref. [8], both quarks

and leptons (including the neutrinos) have 2 ⇥ 1 representation assignments under (d)T , and the

prediction for the solar mixing angle is ⇤ 10�3, which is in the region of small mixing angle solution

that has been ruled out by SNO and KamLAND. A recent attempt in [9] generalizes the (d)T to

2

Form diagonalizable: 
-- no adjustable parameters
-- neutrino mixing from CG coefficients!
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Tri-bimaximal Neutrino Mixing from A4

• charged lepton sector -- without quarks

• operators for charged lepton masses

• scalar sector: flavon triplet for charged lepton masses

• resulting charged lepton mass matrix = diagonal

• leptonic mixing matrix = tri-bimaximal

• seesaw realization with three RH neutrinos (N1, N2, N3) ~ 3 
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z = x5 + ix6

z ⇧ z + 1, z ⇧ z + �, � = ei�/3

z ⇧ �z

(z1, z2, z3, z4) = (1/2, (1 + �)/2, �/2, 0)

3⇤ 3 = 3⇥ 3⇥ 1⇥ 1� ⇥ 1��

HHLL

M

�
⌃⌅⌥
�

+
⌃⇥⌥
�

⇥

⇤

⇧
�1
�2
�3

⌅

⌃

L

⌅ 3, eR ⌅ 1, µR ⌅ 1��, ⇧R ⌅ 1�

⌅ ⌅ 3, ⇥ ⌅ 1

(�⌃)1eR(1) + (�⌃)1�µR(1��) + (�⌃)1��⇧R(1�)

⌃ ⌅ 3

1

where

3S =
1

3





2α1β1 − α2β3 − α3β2

2α3β3 − α1β2 − α2β1

2α2β2 − α1β3 − α3β1



 3A =
1

2





α2β3 − α3β2

α1β2 − α2β1

α3β1 − α1β3





1 = α1β1 + α2β3 + α3β2

1′ = α3β3 + α1β2 + α2β1

1′′ = α2β2 + α1β3 + α3β1 .

9 Appendix B

In this appendix we discuss the subleading terms of the superpotential wd and how they

correct the VEV alignment. We work along the lines of the appendix B of [6].
The VEVs are shifted from the values

〈ϕS〉 = (vS, vS, vS) , 〈ϕT 〉 = (vT , 0, 0) , 〈η〉 = (v1, 0) , 〈ξ〉 = u , 〈ξ̃〉 = 0 , 〈ξ′ ′〉 = 0

to the values

〈ϕS〉 = (vS + δvS 1, vS + δvS 2, vS + δvS 3) , 〈ϕT 〉 = (vT + δvT 1, δvT 2, δvT 3) ,

〈η〉 = (v1 + δv1, δv2) , 〈ξ〉 = u , 〈ξ̃〉 = δũ , 〈ξ′ ′〉 = δu′ ′

where the corrections δvT i, δvS i, δvi, δũ and δu′ ′ are independent of each other. Note
that there also might be a correction to the VEV u, but we do not have to indicate this
explicitly by the addition of a term δu, since u is undetermined at tree-level anyway.

We change the notation in eq. (31) a bit by defining

g3 ≡ 3 g̃2
3 , g4 ≡ −g̃2

4 and g8 ≡ i g̃2
8

such that the VEVs read

vS =
g̃4

3 g̃3
u , vT =

Mη

g9
and v1 =

1√
3 g̃8 g9

√

2 g M2
η + 3 g9 M Mη

where we have chosen the “+” sign for the VEV v1. Apart from the subleading terms

which are already presented in [6] we get 17 other invariants which involve at least one of
the new fields η1,2, ξ′ ′, η0

1,2 and ξ′ 0:

∆wd 2 =
1

Λ

(

18
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i=14

ti I
T
i +

15
∑

i=13

si I
S
i + x4 IX

4 +
4

∑

i=1

ni I
N
i +

4
∑

i=1

yi I
Y
i

)

2⇤ 2 = 2⇥ ⇤ 2⇥⇥ = 2⇥⇥ ⇤ 2⇥ = 3⇥ 1

3 =

⇧

⌥

�
1�i
2

⇥
(�1⇥2 + �2⇥1)
i�1⇥1

�2⇥2

⌃

�

2⇤ 3 = 2⇥ 2⇥ ⇥ 2⇥⇥

2 =
⇤

(1 + i)�2⇥2 + �1⇥1

(1� i)�1⇥3 � �2⇥1

⌅

VCKM =

T ⇥ ⌅ GTST 2 :

T ⇥ � invariant:

T ⇥ ⌅ GT :

1

Tri-bimaximal Neutrino Mixing

• charged lepton sector -- non-GUT models

• operators for charged fermion masses:

• scalar sector: flavon triplet for charged lepton sector

• resulting charged lepton mass matrix: diagonal

• leptonic mixing matrix = tri-bimaximal

• in our model:  SU(5) GUT ⇒ corrections from charged lepton sector
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The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1

Λ2
ytsH5T3Taψζ +

1

Λ2
ycH5TaTaφ

2 +
1

Λ3
yuH5TaTaφ

′3 (4)

LTF =
1

Λ2
ybH

′
5FT3φζ +

1

Λ3

[

ys∆45FTaφψN + ydH
′
5FTaφ

2ψ′

]

(5)

LFF =
1

MxΛ

[

λ1H5H5F F ξ + λ2H5H5F Fη

]

, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈

ξ
〉

= ξ0Λ











1

1

1











,
〈

φ′
〉

= φ′
0Λ











1

1

1











, (7)

(d)T −→ GT :
〈

φ
〉

= φ0Λ











1

0

0











,
〈

ψ
〉

= ψ0Λ





1

0



 (8)

(d)T −→ nothing :
〈

ψ′
〉

= ψ′
0Λ





1

1



 (9)

(d)T −→ GS :
〈

ζ
〉

= ζ0Λ,
〈

N
〉

= N0Λ (10)

(d)T − invariant :
〈

η
〉

= uΛ (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [10],

TST 2 =
1

3











−1 2 2

2 −1 2

2 2 −1











, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [10].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4
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⌅

VCKM =

T ⇤ ⌃ GTST 2 :

T ⇤ � invariant:

T ⇤ ⌃ GT :

T ⇤ ⌃ nothing:

T ⇤ ⌃ GS :

m1 = u0 + 3⇤0

m2 = u0

m3 = �u0 + 3⇤0

�m2
atm ⇧ |m3|2 � |m2|2 = �12u0⇤0

�m2
⇥ ⇧ |m2|2 � |m1|2 = �9⇤2

0 � 6u0⇤0 (1)

VCKM = V †
u,LVd,L

VMNS = V †
e,LV� = I · UTBM = UTBM

1

A4
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Non-Abelian Finite Family Symmetry A4

• TBM mixing matrix: can be realized with finite group family 
symmetry based on A4

•A4:  even permutations of 4 objects
      S: (1234) → (4321)

      T: (1234) → (2314)

•Group of order 12
• Invariant group of tetrahedron
•Problem: A4 does not seem to give rise to quark mixing

13

Ma, Rajasekaran (2001); Babu, Ma, Valle (2003); ...
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Example: T′ Family Symmetry 

• SU(5) compatibility ⇒ Double Tetrahedral Group T´

• In-equivalent representations of T′

• Symmetries ⇒ 9 parameters in Yukawa sector ⇒ 22 physical observables
• neutrino mixing angles from group theory (CG coefficients)
• TBM: misalignment of symmetry breaking patterns

• neutrino sector: T’ → GTST2 ,  charged lepton sector: T’ → GT   

• GUT symmetry ⇒ contributions to mixing parameters from charged lepton sector

 ⇒ deviation from TBM related to Cabibbo angle θc ,consequence of Georgi-Jarlskog    
relations

• large θ13 possible with one additional singlet flavon

14

A4:  1,  1′,  1″, 3
other:   2,  2′,  2″

vectorial representations for neutrinos

spinorial representations for quarks

angle, the corresponding mixing angle in the charged lepton sector, ⌅e
12, is much suppressed due to

the GJ relations,

⌅e
12 ⌅

⌥
me

mµ
⌅ 1

3

⌥
md

ms
⇤ 1

3
⌅c . (18)

As a result, the correction to the tri-bimaximal mixing pattern due to the mixing in the charged

lepton sector is small, and is given, to the leading order, by,

tan2 ⌅� ⌅ tan2 ⌅�,TBM � ei�⌅c/3 , (19)

where the relative phase � is determined by the strengths and phases of the VEV’s, ⇧0 and ⌃⇥
0.

With ⌅c ⌅ 0.22 and (⇧0⌃⇥
0) being real, the factor ei� turns out to be very close to 1. This

deviation thus naturally accounts for the di�erence between the prediction of the TBM matrix,

which gives tan2 ⌅�,TBM = 1/2, and the experimental best fit value, tan2 ⌅�,exp = 0.429. The

o� diagonal matrix element in Me also generates a non-zero value for the neutrino mixing angle

⌅13 ⌅ ⌅c/3
⇧

2 ⇤ 0.05. We note that a more precise measurement of tan ⌅� will pin down the

phase of ⇧0⌃⇥
0, and thus the three leptonic CP phases, which may yield interesting consequences

on leptogenesis [10] and lepton flavor violating processes [11].

III. NUMERICAL RESULTS

The observed quark masses respect the following relation,

mu : mc : mt = ⇥2u : ⇥u : 1, md : ms : mb = ⇥2d : ⇥d : 1 , (20)

where ⇥u ⌅ (1/200) = 0.005 and ⇥d ⌅ (1/20) = 0.05.

In our model, the mass matrices for the down type quarks and charged leptons can be

parametrized as,

Md

ybvd⇧0⇤0
=

�

⇧⇧⇧⇤

0 (1 + i)b 0

�(1� i)b c 0

b b 1

⇥

⌃⌃⌃⌅
,

Me

ybvd⇧0⇤0
=

�

⇧⇧⇧⇤

0 �(1� i)b b

(1 + i)b �3c b

0 0 1

⇥

⌃⌃⌃⌅
,

(21)

and with the choice of b ⇥ ⇧0⌃⇥
0/⇤0 = 0.00789 and c ⇥ ⌃0N0/⇤0 = 0.0474, the mass ratios for the

down type quarks and for the charged leptons are given by,

md : ms : mb = 0.00250 : 0.0499 : 1.00 , (22)

me : mµ : m⇤ = 0.000870 : 0.143 : 1.00 . (23)

8

CG’s of 
SU(5) & T´

TBM for neutrinos

2 +1 assignments for quarks

The values in Eq. 46 correspond to the following parameters in the standard
parametrization (PDG),

s12 ⌅ ⌥ = 0.227, s23 ⌅ A⌥2 = 0.0411, s13 = 0.00412, c12 = 0.974, c23 = c13 ⌃ 0 .
(49)

⇤

⇧
0.838 0.542 0.0583e�i227o

�0.385� 0.0345ei227o

0.594� 0.0224ei227o

0.705
0.384� 0.0346ei227o �0.592� 0.0224ei227o

0.707

⌅

⌃ (50)

⇧ |UMNS | =

⇤

⇧
0.838 0.542 0.0583
0.362 0.610 0.705
0.408 0.577 0.707

⌅

⌃ (51)

J� = �0.00967 (52)

Charged lepton diagonalization matrix:
⇤

⇧
0.997ei177o

0.0823ei131o

1.31⇤ 10�5e�i45o

0.0823ei41.8o

0.997ei176o

0.000149e�i3.58o

1.14⇤ 10�6 0.000149 1

⌅

⌃ (53)

sin2 2⌃atm = 1, tan2 ⌃⇤ = 0.419, |Ue3| = 0.0583 (54)

tan2 ⌃⇤ ⌃ tan2 ⌃⇤,TBM +
1
2
⌃c cos ⌅ (55)

4

M.-C. C., J. Huang, J. O’Bryan, A. Wijiangco, F.  Yu (2012); M.-C. C., J. Huang, K.T. Mahanthappa, A. Wijiangco (2013)

M.-C.C, K.T. Mahanthappa (2007, 2009)
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Sum Rules: Quark-Lepton Complementarity

• QLC-I

• QLC-II

• testing sum rules: a more robust way to distinguish different classes of models

mixing parameters best fit 3σ range

θq
23 2.36o 2.25o - 2.48o

θq
12 12.88o 12.75o - 13.01o

θq
13 0.21o 0.17o - 0.25o

mixing parameters best fit 3σ range

θe
23 42.8o 35.5o - 53.5o

θe
12 34.4o 31.5o - 37.6o

θe
13 5.6o ≤ 12.5o 

Quark Mixing Lepton Mixing

θc + θsol ≅ 45o

tan2θsol ≅ tan2θsol,TBM + (θc / 2) * cos δe 

θq23 + θe23 ≅ 45o

Raidal, ‘04; Smirnov, Minakata, ‘04

Ferrandis, Pakvasa; King; Dutta, 
Mimura; M.-C.C., Mahanthappa 

θe13 ≅ θc / 3√2

(BM)

(TBM)

15

measuring leptonic mixing parameters to 
the precision of those in quark sector

before θ13 discovery
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• QLC-I

• QLC-II

• testing sum rules: a more robust way to distinguish different classes of models

mixing parameters best fit 3σ range

θq
23 2.36o 2.25o - 2.48o

θq
12 12.88o 12.75o - 13.01o

θq
13 0.21o 0.17o - 0.25o

mixing parameters best fit 3σ range

θe
23 38.4o 35.1o - 52.6o

θe
12 33.6o 30.6o - 36.8o

θe
13 8.9o 7.5o -10.2o 

Quark Mixing Lepton Mixing

θc + θsol ≅ 45o

tan2θsol ≅ tan2θsol,TBM + (θc / 2) * cos δe 

θq23 + θe23 ≅ 45o

Raidal, ‘04; Smirnov, Minakata, ‘04

Ferrandis, Pakvasa; King; Dutta, 
Mimura; M.-C.C., Mahanthappa 

θe13 ≅ θc / 3√2

(BM)

(TBM)

16

measuring leptonic mixing parameters to the 
precision of those in quark sector

☜ inconsistent @ 2σ

☜ Too small

after θ13 discovery
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“Large” Deviations from TBM in A4 

• Generically: corrections on the order of (θc)2  
• from charged lepton sector: 

• through GUT relations
• from neutrino sector: 

• higher order holomorphic contributions in superpotential

• Modifying the Neutrino sector:  Different symmetry breaking patterns
• TBM: misalignment of 

• A4 → GTST2     and  A4 → GT   

• A4: group of order 12 ⇒ many subgroups

• systematic study of breaking into other A4 subgroups

17

M.-C.C, J. Huang, J. O’Bryan, A. Wijangco, F.  Yu, (2012)
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“Large” Deviations from TBM in A4 

• other A4 breaking patterns:

                          

18

invertednormal

M.-C.C, J. Huang, J. O’Bryan, A. Wijangco, F.  Yu, (2012)

non-maximal θ23 ➩ normal hierarchydeviations 
correlated
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Flavor Model Structure: A4 Example
• interplay between the symmetry breaking patterns 

in two sectors lead to lepton mixing (BM, TBM, ...)

• symmetry breaking achieved through flavon VEVs

• each sector preserves different residual symmetry

• full Lagrangian does not have these residual 
symmetries

• general approach: include high order terms in 
holomorphic superpotential

• possible to construct models where higher order 
holomorphic superpotential terms vanish to ALL 
orders

• quantum correction?
⇒ uncertainty in predictions due to                                     

     Kähler corrections

19

GF

Ge Gν

charged lepton 
sector
e.g. Z3 

subgroup of A4

neutrino
 sector
e.g. Z2 

subgroup of A4

〈Φe〉 〈Φν〉

〈 Φe〉∝ (1,0,0) 〈 Φν〉∝ (1,1,1)

e.g. A4

Leurer, Nir, Seiberg (1993); Dudas, Pokorski, 
Savoy (1995); Dreiner, Thomeier (2003);  

Mu-Chun Chen, UC Irvine                                                         Theory of Lepton Flavors                                                      Pheno 2014, Pittsburgh



Kähler Corrections

• Superpotential: holomorphic

• Kähler potential: non-holomorphic

• Canonical Kähler potential

• Correction 

20

- can be induced by flavon VEVs
- important for order parameter ~ θc

- can lead to non-trivial mixing

GF

Ge Gν

〈Φe〉 〈Φν〉

Figure 1: The flavor symmetry GF gets broken to different subgroups in different sectors
of the theory.

At the first glance, one may think that the corrections are related to possible higher–
order terms that have to be added to the leading order superpotential (1.1). However,
it is rather straightforward to construct models in which such higher–order corrections
are absent to all orders. We will discuss such examples in a future publication [4].

The true solution to this puzzle is that models of the above type do not predict exact
relations such as (tri–)bi–maximal mixing due to the presence of the Kähler corrections
induced by the flavon VEVs [5,6], even if higher order holomorphic corrections are absent.
The Kähler potential should contain all terms consistent with the flavor symmetry,

K = Kcanonical +∆K , (1.3)

where the relevant canonical terms include (with the SM gauge multiplets being set to
zero)

Kcanonical ⊃
(

Lf
)†

δfg L
g +

(

Rf
)†

δfg R
g , (1.4)

and ∆K contains contractions of Lf and Rf and their Hermitean conjugates with the
flavons. First of all, each of these terms in ∆K introduces one new parameter, i.e.
its respective Kähler coefficient. Furthermore, once the flavons attain their VEVs, the
flavor symmetry is broken thus modifying the Kähler metric. This modification ∆K of
the Kähler potential can be written as

∆K =
(

Lf
)†

(∆KL)fg L
g +

(

Rf
)†

(∆KR)fg R
g , (1.5)

with Hermitean matrices ∆KL and ∆KR whose structures are determined by the flavor
symmetries and the flavon VEVs.

The necessary field redefinitions to compensate for these additional terms and to re-
trieve a canonical Kähler potential affect the superpotential. In particular, the Majorana
mass matrix of the neutrinos and the Yukawa coupling matrix of the charged leptons
are altered. This leads to changes of the neutrino mixing parameters irrespective of the
existence of higher–order terms in the superpotential.

The purpose of this letter is to provide the first analytic discussion of these changes,
leaving a more complete analysis for a future publication [4]. In section 2 we will start
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1 Introduction

The observed patterns of fermion masses and mixing may originate from underlying
flavor symmetries. Typically, such flavor symmetries are assumed to be spontaneously
broken by the vacuum expectation values (VEVs) of certain ‘flavon’ fields. Given a large
enough flavor symmetry, one may thus hope to obtain a scheme that allows us to derive
testable predictions. This applies, in particular, to settings in which flavor is generated
at a very high scale, which cannot be directly accessed at colliders.

In this work, we study supersymmetric extensions of the standard model, in which
flavor is generated at a high scale. For concreteness, we will take the scale of the flavon
VEVs and the cut–off of the theory to be around the unification scale, though our
results do not depend on this choice. On the other hand, one can imagine models in
which there is a large difference between these two scales or which are renormalizable. In
such models, non–renormalizable corrections including the corrections from the Kähler
potential discussed in this letter become unimportant.

In order to be specific, we focus on the lepton sector of the theory, although our
analysis can also be applied to the quark sector. Generically, the relevant superpotential
reads, at the leading order,

Wleading =
1

Λ
(Φe)gf L

g Rf Hd +
1

ΛΛν

(Φν)gf L
g Hu L

f Hu , (1.1)

where Lg and Rf (with the flavor indices 1 ≤ f, g ≤ 3) denote the lepton doublets and
singlets, respectively, Hu and Hd are the Higgs doublets of the supersymmetric standard
model, whereas Φe and Φν are the appropriate flavons. The two scales involved are the
cut–off scale of the theory Λ and the see–saw scale Λν . Once Φe and Φν acquire their
VEVs, this leads to the effective superpotential

Weff = (Ye)gf L
g Rf Hd +

1

4
κgf L

g Hu L
f Hu . (1.2)

In many models, one is left with a situation in which the flavon VEVs 〈Φe〉 and 〈Φν〉
respect certain residual symmetries, which are then dubbed symmetries of the charged
lepton Yukawa couplings or the neutrino mass matrix, respectively (cf. figure 1). Pre-
dictions of such models are then based on these symmetries.

However, one may question if these are really robust predictions of the respective
models. In particular, while certain terms in the superpotential appear to possess the
aforementioned symmetries, the Lagrangean density often exhibits no residual symmetry.
In other words, the combined VEVs 〈Φe〉 and 〈Φν〉 break the flavor symmetry completely.
Moreover, the so–called predictions are subject to quantum corrections. For instance,
the bi–maximal [1,2] or tri–bi–maximal [3] mixing patterns are known not to be invariant
under the renormalization group. On the other hand, the statements below (1.2) do not
single out a particular scale. Therefore, one may wonder how such corrections can be
consistent with the statement that the charged lepton Yukawa couplings or the neutrino
mass matrix exhibit certain symmetries.
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M.-C.C., M. Fallbacher, M. Ratz, C. Staudt (2012)

order parameter 
<flavon vev> / Λ ~ θc
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Kähler Corrections

• Consider infinitesimal change, x :

• rotate to canonically normalized L’: 

⇒ corrections to neutrino mass matrix

21

off–diagonal terms in the Yukawa matrix. Hence, the transformed Yukawa matrix is still
diagonal, only the eigenvalues may be changed. This implies that such a field redefinition
does not have any influence on the neutrino mixing matrix. In conclusion, the model
can be modified such that the corrections from the right–handed sector cannot change
the mixing parameters, and therefore, they are not discussed any further.

3.4 Analytic formulae for Kähler corrections

It is possible to derive some simple analytic formulae for the change of the mixing
parameters due to small non–diagonal terms in the Kähler potential.1 Suppose that,
after the flavon fields attain their VEVs, the Kähler potential reads

K = Kcanonical +∆K = L† (1− 2xP )L (3.3)

with a Hermitean matrix P and an infinitesimal expansion parameter x. The Kähler
metric is diagonalized to first order in x by the field redefinition

L → L′ = (1− xP )L . (3.4)

This field redefinition affects the effective neutrino mass operator κ for the canonically
normalized left–handed doublets L′ f ,

Wν #
1

4
(L′ fHu)

T
[

κ+ xP T κ+ xκP
]

gf
L′ gHu , (3.5)

where κ · v2u = 2mν with mν specified in equation (2.7). That is, the neutrino mass
operator has effectively become x–dependent, and the resulting neutrino mass matrix
depends on x as

mν(x) # mν + xP T mν + xmν P . (3.6)

This leads to the differential equation

dmν

dx
= P T mν +mν P (3.7)

for the neutrino mass matrix, which holds locally at x = 0. This equation has the same
structure as the one governing the renormalization group (RG) evolution of the mass
operator. In [11], analytic formulae describing the evolution of the mixing parameters
have been derived. Using an analogous procedure, one can compute the derivatives of the
mixing parameters at x = 0. With the Kähler coefficients and the ratios of flavon VEVs
and high scale Λ as input parameters, the resulting formulae can be used to predict the
change of the mixing parameters due to a non–trivial Kähler metric for not too large
deviations from the canonical one. The detailed derivation of these formulae and a more

1We only discuss the neutrino sector here. The left–handed and right–handed charged lepton sectors
can be dealt with separately in a similar manner. This will be discussed in a future publication [4].
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Kähler Corrections

• Consider infinitesimal change, x :

• rotate to canonically normalized L’: 

⇒ corrections to neutrino mass matrix

⇒ differential equation

• same structure as the RG evolutions for neutrino mass operator
• analytic understanding of evolution of mixing parameters

• size of Kähler corrections can be substantially larger (no loop suppression)
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off–diagonal terms in the Yukawa matrix. Hence, the transformed Yukawa matrix is still
diagonal, only the eigenvalues may be changed. This implies that such a field redefinition
does not have any influence on the neutrino mixing matrix. In conclusion, the model
can be modified such that the corrections from the right–handed sector cannot change
the mixing parameters, and therefore, they are not discussed any further.

3.4 Analytic formulae for Kähler corrections

It is possible to derive some simple analytic formulae for the change of the mixing
parameters due to small non–diagonal terms in the Kähler potential.1 Suppose that,
after the flavon fields attain their VEVs, the Kähler potential reads

K = Kcanonical +∆K = L† (1− 2xP )L (3.3)

with a Hermitean matrix P and an infinitesimal expansion parameter x. The Kähler
metric is diagonalized to first order in x by the field redefinition

L → L′ = (1− xP )L . (3.4)

This field redefinition affects the effective neutrino mass operator κ for the canonically
normalized left–handed doublets L′ f ,

Wν #
1

4
(L′ fHu)

T
[

κ+ xP T κ+ xκP
]

gf
L′ gHu , (3.5)

where κ · v2u = 2mν with mν specified in equation (2.7). That is, the neutrino mass
operator has effectively become x–dependent, and the resulting neutrino mass matrix
depends on x as

mν(x) # mν + xP T mν + xmν P . (3.6)

This leads to the differential equation

dmν

dx
= P T mν +mν P (3.7)

for the neutrino mass matrix, which holds locally at x = 0. This equation has the same
structure as the one governing the renormalization group (RG) evolution of the mass
operator. In [11], analytic formulae describing the evolution of the mixing parameters
have been derived. Using an analogous procedure, one can compute the derivatives of the
mixing parameters at x = 0. With the Kähler coefficients and the ratios of flavon VEVs
and high scale Λ as input parameters, the resulting formulae can be used to predict the
change of the mixing parameters due to a non–trivial Kähler metric for not too large
deviations from the canonical one. The detailed derivation of these formulae and a more

1We only discuss the neutrino sector here. The left–handed and right–handed charged lepton sectors
can be dealt with separately in a similar manner. This will be discussed in a future publication [4].
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Back to A4 Example

• Kähler corrections due to flavon field:
‣ linear in flavon: can be forbidden with additional symmetries
‣quadratic in flavon

‣such terms cannot be forbidden by any (conventional) symmetry
‣Kähler corrections once flavon fields attain VEVs
‣additional parameters          reduce predictivity of the scheme

‣possible to forbid all contributions from RH sector as well as                                 
with additional symmetries in the example considered 
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θ12 θ13 θ23

TBM prediction: arctan
(√

0.5
)

≈ 35.3◦ 0 45◦

Best fit values (±1σ):
(

33.6+1.1
−1.0

)◦ (

8.93+0.46
−0.48

)◦ (

38.4+1.4
−1.2

)◦

Table 2.1: Tri–bi–maximal prediction for the neutrino mixing angles and best fit values
from the global fit by [10].

3 Corrections due to Kähler potential terms

As discussed in the introduction, apart from the canonical terms, there may exist extra
terms in the Kähler potential induced by the flavon VEVs. In the A4 example model
discussed above, these terms are contractions of the left–handed lepton doublets, which
transform as an A4 triplet, with one or several flavons. After the flavons acquire a
VEV, these terms lead to a Kähler metric with off–diagonal terms. We shall sketch the
computation for the A4 example model, leaving the general derivation to [4].

3.1 Linear flavon corrections

The leading order contributions are linear in the flavons. These linear terms are only
suppressed by one power of the ratio of the flavon VEV to the fundamental scale of the
theory. The contributions in the A4 model discussed above read schematically

∆Klinear =
∑

i∈{a,s}

(

κ(i)
Φν

Λ
∆K(i)

L† (L⊗Φν)3i
+

κ(i)
Φe

Λ
∆K(i)

L† (L⊗Φe)3i

)

+
κξ

Λ
∆KξL†L+h.c. . (3.1)

However, it is easy to forbid any of these terms, by introducing an additional symmetry
(such as the 4 symmetry in the example model) under which all flavons are charged.
Hence, we do not consider the linear flavon corrections any further but turn to contribu-
tions which are quadratic in the flavons, and cannot be forbidden by any (conventional)
symmetry.

3.2 Second order corrections

The corrections to the Kähler metric which are second order in the flavon VEVs can be di-
vided into two classes. The first class consists of terms that are of the form (LΦν)†(LΦν)
or (LΦe)†(LΦe), i.e. they are quadratic in one specific flavon. As mentioned above, these
cannot be forbidden by a (conventional) symmetry. This is not true for the second class
which consists of terms of the form (LΦν)†(LΦe), i.e. they are contractions involving
two different flavons. For the same reasons as in the linear case, the second class is not
considered here.

All corrections discussed here can thus be obtained from suitable contractions of
the terms (L ⊗ Φν)

†
R
(L ⊗ Φν)R′ and (L ⊗ Φe)

†
R
(L ⊗ Φe)R′ using the rules stated in

(2.2). Although there are numerous possible contractions, several of them give the same

5

θ12 θ13 θ23

TBM prediction: arctan
(√

0.5
)

≈ 35.3◦ 0 45◦

Best fit values (±1σ):
(

33.6+1.1
−1.0

)◦ (

8.93+0.46
−0.48

)◦ (

38.4+1.4
−1.2

)◦

Table 2.1: Tri–bi–maximal prediction for the neutrino mixing angles and best fit values
from the global fit by [10].

3 Corrections due to Kähler potential terms

As discussed in the introduction, apart from the canonical terms, there may exist extra
terms in the Kähler potential induced by the flavon VEVs. In the A4 example model
discussed above, these terms are contractions of the left–handed lepton doublets, which
transform as an A4 triplet, with one or several flavons. After the flavons acquire a
VEV, these terms lead to a Kähler metric with off–diagonal terms. We shall sketch the
computation for the A4 example model, leaving the general derivation to [4].

3.1 Linear flavon corrections

The leading order contributions are linear in the flavons. These linear terms are only
suppressed by one power of the ratio of the flavon VEV to the fundamental scale of the
theory. The contributions in the A4 model discussed above read schematically

∆Klinear =
∑

i∈{a,s}

(

κ(i)
Φν

Λ
∆K(i)

L† (L⊗Φν)3i
+

κ(i)
Φe

Λ
∆K(i)

L† (L⊗Φe)3i

)

+
κξ

Λ
∆KξL†L+h.c. . (3.1)

However, it is easy to forbid any of these terms, by introducing an additional symmetry
(such as the 4 symmetry in the example model) under which all flavons are charged.
Hence, we do not consider the linear flavon corrections any further but turn to contribu-
tions which are quadratic in the flavons, and cannot be forbidden by any (conventional)
symmetry.

3.2 Second order corrections

The corrections to the Kähler metric which are second order in the flavon VEVs can be di-
vided into two classes. The first class consists of terms that are of the form (LΦν)†(LΦν)
or (LΦe)†(LΦe), i.e. they are quadratic in one specific flavon. As mentioned above, these
cannot be forbidden by a (conventional) symmetry. This is not true for the second class
which consists of terms of the form (LΦν)†(LΦe), i.e. they are contractions involving
two different flavons. For the same reasons as in the linear case, the second class is not
considered here.

All corrections discussed here can thus be obtained from suitable contractions of
the terms (L ⊗ Φν)

†
R
(L ⊗ Φν)R′ and (L ⊗ Φe)

†
R
(L ⊗ Φe)R′ using the rules stated in

(2.2). Although there are numerous possible contractions, several of them give the same

5

and

θ12 θ13 θ23

TBM prediction: arctan
(√

0.5
)

≈ 35.3◦ 0 45◦

Best fit values (±1σ):
(

33.6+1.1
−1.0

)◦ (

8.93+0.46
−0.48

)◦ (

38.4+1.4
−1.2

)◦

Table 2.1: Tri–bi–maximal prediction for the neutrino mixing angles and best fit values
from the global fit by [10].

3 Corrections due to Kähler potential terms

As discussed in the introduction, apart from the canonical terms, there may exist extra
terms in the Kähler potential induced by the flavon VEVs. In the A4 example model
discussed above, these terms are contractions of the left–handed lepton doublets, which
transform as an A4 triplet, with one or several flavons. After the flavons acquire a
VEV, these terms lead to a Kähler metric with off–diagonal terms. We shall sketch the
computation for the A4 example model, leaving the general derivation to [4].

3.1 Linear flavon corrections

The leading order contributions are linear in the flavons. These linear terms are only
suppressed by one power of the ratio of the flavon VEV to the fundamental scale of the
theory. The contributions in the A4 model discussed above read schematically

∆Klinear =
∑

i∈{a,s}

(

κ(i)
Φν

Λ
∆K(i)

L† (L⊗Φν)3i
+

κ(i)
Φe

Λ
∆K(i)

L† (L⊗Φe)3i

)

+
κξ

Λ
∆KξL†L+h.c. . (3.1)

However, it is easy to forbid any of these terms, by introducing an additional symmetry
(such as the 4 symmetry in the example model) under which all flavons are charged.
Hence, we do not consider the linear flavon corrections any further but turn to contribu-
tions which are quadratic in the flavons, and cannot be forbidden by any (conventional)
symmetry.

3.2 Second order corrections

The corrections to the Kähler metric which are second order in the flavon VEVs can be di-
vided into two classes. The first class consists of terms that are of the form (LΦν)†(LΦν)
or (LΦe)†(LΦe), i.e. they are quadratic in one specific flavon. As mentioned above, these
cannot be forbidden by a (conventional) symmetry. This is not true for the second class
which consists of terms of the form (LΦν)†(LΦe), i.e. they are contractions involving
two different flavons. For the same reasons as in the linear case, the second class is not
considered here.

All corrections discussed here can thus be obtained from suitable contractions of
the terms (L ⊗ Φν)

†
R
(L ⊗ Φν)R′ and (L ⊗ Φe)

†
R
(L ⊗ Φe)R′ using the rules stated in

(2.2). Although there are numerous possible contractions, several of them give the same

5

M.-C.C., M. Fallbacher, M. Ratz, C. Staudt (2012)

Mu-Chun Chen, UC Irvine                                                         Theory of Lepton Flavors                                                      Pheno 2014, Pittsburgh



• Contributions from Flavon VEVs  (1,0,0) and (1,1,1)

• five independent “basis” matrices

• RG correction: essentially along PIII = diag(0,0,1) direction due to yτ dominance

• Kähler corrections can be along different directions than RG

24

we only have 5 independent matrices in total,

P
I

=

0

@
1 0 0
0 0 0
0 0 0

1

A , (3.7a)

P
II

=
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@
0 0 0
0 1 0
0 0 0

1

A , (3.7b)

P
III

=

0

@
0 0 0
0 0 0
0 0 1

1

A , (3.7c)

P
IV

=

0

@
0 1 1
1 0 1
1 1 0

1

A , (3.7d)

P
V

=

0

@
0 i �i
�i 0 i
i �i 0

1

A . (3.7e)

In appendix B we derive simple analytic formulae that allow us to understand the
the impact of such corrections on the mixing parameters. Applying these formulae, one
can express the changes of the mixing parameters for a given form P of the Kähler
correction. For example, for a Kähler correction of the form P

IV

one obtains, starting
from ✓

12

= ⇡/6, ✓
13

= 0, ✓
23
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1

= '
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�✓
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(2m
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�m
3

) +m
3

(m
2

� 2m
3

)p
2 (m

1

�m
3

)(m
3

�m
2

)
, (3.8)

where � = v/⇤, ⇤ being the cut–o↵ scale and v being the flavon VEV.

3.1 Reconsideration of the example models

Using the results from the foregoing section, we can compute the Kähler corrections
which arise in the example models discussed in Section 2.1 and see how the predictions
change.

4 Conclusions

. . .
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In appendix B we derive simple analytic formulae that allow us to understand the
the impact of such corrections on the mixing parameters. Applying these formulae, one
can express the changes of the mixing parameters for a given form P of the Kähler
correction. For example, for a Kähler correction of the form P
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where � = v/⇤, ⇤ being the cut–o↵ scale and v being the flavon VEV.

3.1 Reconsideration of the example models

Using the results from the foregoing section, we can compute the Kähler corrections
which arise in the example models discussed in Section 2.1 and see how the predictions
change.
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Enhanced θ13 

• consider change due to correction along PV direction

• Kähler metric: 

• Contributions of flavon VEV:

• Corrections to the leading order TBM prediction (                            )

• Complex matrix P ⇒  CP violation induced

• for the example considered: 
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thorough discussion of their implications are deferred to a later publication [4]. Here,
we only discuss some examples for the case of the A4 model described above.

Let us briefly comment on the relation of Kähler corrections and RG evolution (cf.
also [7]). First of all, unlike RG corrections, the Kähler corrections are not loop–
suppressed. Furthermore, while they are similar in structure, generally the Kähler cor-
rections can be along different directions. In particular, they are not restricted to the
diagonal. For example, in the model considered, the main RG correction is essentially
along the direction specified by the matrix PIII in equation (3.2a). The Kähler correc-
tions, however, can be along any of the five directions in equation (3.2). Which one(s)
of these five directions dominate(s) depends upon the UV completion of the model.

3.5 Implications for the A4 example model

With the analytic formulae whose derivation was sketched briefly in the foregoing section,
we can compute the Kähler corrections which arise in the example model [8] discussed
in section 2.

The most interesting correction is due to the matrix PV in equation (3.2). It originates
from the term (L⊗ Φν)

†
3a
(L ⊗ Φν)3s

+ h.c. in the Kähler potential. Performing the A4

contractions carefully, one finds that the additional Kähler potential term is given by

∆K = κV ·
v2

Λ2
· 3
√
3 · (Lf )† (PV)fg (L

g) , (3.8)

where κV denotes the relevant Kähler coefficient.
The analytic formula for the change of θ13 compared to the case of a canonical Kähler

potential reads

∆θ13 = κV ·
v2

Λ2
· 3
√
3 ·

1√
2

(

2m1

m1 +m3
+

m2
e

m2
µ −m2

e

+
m2

e

m2
τ −m2

e

)

$ κV ·
v2

Λ2
· 3
√
6

m1

m1 +m3
, (3.9)

where the mi are the neutrino masses. In the second line, the very small contribution of
the charged leptons has been neglected.

In the following, we assume that the normal neutrino hierarchy is realised and use
the current PDG [12] values for the differences of the mass–squares,

∆m2
21 = 7.50 · 10−5 (eV)2 and ∆m2

32 = 2.32 · 10−3 (eV)2 , (3.10)

as input parameters. Moreover, the ratio of VEV to the fundamental scale v/Λ is set
to 0.2 and the Kähler coefficient κV is set to 1. Then the variation of the change of
θ13 with m1 can be studied and is shown in figure 2. The deviation from the exact
tri–bi–maximal prediction is substantial, especially in the regime where m1 gets large.
This is also easy to see from the analytic formula that asymptotically approaches a value
of ∆θ13 ≈ 8.42◦ for m1 → ∞. Based on the fact that the differential equation for the
Kähler corrections is similar in structure to the RG equation, our numerical result is
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correction ∆K to the Kähler metric up to the respective Kähler coefficient which is a
complex number. All in all, there are 5 different matrices which have to be considered.
The first three matrices

PI = diag(1, 0, 0) , PII = diag(0, 1, 0) and PIII = diag(0, 0, 1) (3.2a)

come from contractions of L with Φe. That is, their contribution is proportional to (v′)2,
where v′ is the size of the VEV of Φe, 〈Φe〉 = (v′, 0, 0). The remaining two matrices,

PIV =





1 1 1
1 1 1
1 1 1



 and PV =





0 i −i
−i 0 i
i −i 0



 , (3.2b)

are contributions due to Φν . Therefore, their contribution in the Kähler potential is
proportional to v2 which is defined by 〈Φν〉 = (v, v, v).

The third flavon ξ does not yield any relevant contribution since it can only give an
overall normalization factor, which does not change the mixing angles. Another way
of understanding this is by observing that ξ is not a flavon in the strict sense as it
transforms trivially under A4, such that its VEV does not break A4.

Each of the corrections is suppressed by the cut–off scale Λ to the second power.
Furthermore, each of the terms comes with its own Kähler coefficient κi, which, in
general, is complex. Adding the Hermitean conjugate always cancels either the term with
the real or the imaginary part of κi. We arranged our matrices Pi in a way that all the
coefficients can be chosen real. However, the values of the Kähler coefficients κi are not
fixed by the symmetries of the model and, therefore, their presence introduces additional
continuous parameters. One may hope to be able to compute them in a possible UV
completion of the model. Generically, these higher order terms in the Kähler potential
can come from integrating out heavy modes that are required to complete the model in
the UV. Since one expects to have several of such modes, whose couplings to the zero
modes of the theory can moreover be unsuppressed, and due to group theoretical factors,
the Kähler coefficients can be of the order unity or even larger.

Let us comment that the Kähler corrections will, in general, also be important for
the question of VEV alignment. That is, the scalar potential that fixes the VEVs of the
flavons at some desired pattern will also be subject to these corrections, and one might
expect deviations from the fully symmetric structures (such as those specified in (2.5)).
We plan to discuss these issues in more detail in our follow–up paper [4].

3.3 Corrections from the right–handed leptons

In principle, there are also contributions from the right–handed sector. However, in the
model discussed here, all right–handed charged leptons are A4 singlets, and therefore,
the corresponding Kähler corrections can be made diagonal. More precisely, possible
off–diagonal terms can easily be forbidden by additional symmetries (cf. the discussion
in 3.1). Since our basis is chosen such that the original charged lepton Yukawa matrix
is diagonal, a diagonal redefinition of the right–handed leptons Rf cannot induce any
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An Example: Enhanced θ13 
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Figure 2: Change of θ13 due to the Kähler correction ∆K shown in equation (3.8) for
κV v2/Λ2 = (0.2)2. The continuous line shows the result of equation (3.9), which was
obtained using a linear approximation (cf. section 3.4), while the dashed line shows the
result of a numerical computation. As one can see, the linear approximation yields a
very accurate estimate on the true change ∆θ13.

consistent with the expectation, as m1 → O(0.1 eV) corresponds to the near degenerate
regime for the neutrino masses, where an enhanced correction to the mixing angle is
expected.

In contrast to the case of θ13, the changes of θ12 and θ23 are predicted to be zero if one
uses the linear extrapolation of their changes starting from the tri–bi–maximal mixing
pattern. However, as we have seen above, θ13 can undergo a substantial change such
that also the other two mixing angles change due to higher order non-linear terms. We
have confirmed this behavior numerically, using the MixingParameterTools package [13].
The dependence of the change on the lightest neutrino mass m1 is shown in figure 3.
Both changes are significantly smaller than the one of θ13.

A further interesting consequence of the Kähler correction is the generation of CP
violation. It arises due to the fact that the matrix PV is complex. In fact, the Dirac CP
phase δ, which is not properly defined for exact tri–bi–maximal mixing due to θ13 = 0, is
close to δ = 3π/2 taking into account the corrections. Note that similar relations can also
be obtained from the holomorphic superpotential in models with T ′ flavor symmetry [14].

The chosen example illustrates that predictions which are solely based on the in-
spection of the superpotential are not very reliable. Indeed, for example, the global fit
value for θ13 =

(

8.93+0.46
−0.48

)◦
[10] (cf. table 2.1) can be accommodated without resorting

to higher–order contributions from the superpotential, provided the neutrino mass spec-
trum is not too hierarchical, the ratio of flavon VEV to the fundamental scale v/Λ is of
the order of the Cabibbo angle and the Kähler coefficient κV is of order one.

Our result also shows that the Kähler corrections can be more significant than the
effects of the RG evolution.
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Corresponding Change in θ12
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Figure 3: Changes of (a) θ12 and (b) θ23 due to the Kähler correction ∆K shown in
equation (3.8) for κV v2/Λ2 = (0.2)2 computed numerically.

4 Conclusions

We have carefully re–examined models in which different flavons appear to break a given
flavor symmetry GF down to different subgroups in different sectors of the theory. In the
context of supersymmetric settings, the fact that there is no residual symmetry in the
full Lagrangean manifests itself in corrections to the Kähler potential K that break GF

in all subsectors. We have argued that the corresponding higher–order terms in K are, in
a way, unavoidable as they cannot be forbidden by any (conventional) symmetry. These
terms come with certain coefficients, which are not determined by the symmetries of the
model and, therefore, introduce additional continuous parameters. We have also argued
that the Kähler corrections are generically much larger and, therefore, more relevant
than renormalization effects, which can also be understood as Kähler corrections along
a very specific direction.

In order to make our analysis more concrete, we have outlined the discussion of
the corrections in a model based on the flavor symmetry GF = A4 × 4 [8]. We have
presented the first results of an analytic discussion of the Kähler corrections, i.e. a simple
analytic formula that allows us to express the change in the prediction on the mixing
parameters induced by the respective flavon VEVs. While leaving the full discussion
for a future publication [4], we have explicitly shown that in the simple A4 model,
which predicts tri–bi–maximal mixing at leading order, one of the flavon VEVs induces
a large variation of the mixing angle θ13 while leaving the other mixing angles essentially
unchanged. An optimistic interpretation of this possibility may amount to the statement
that even simple models like the one discussed here can be consistent with the recent
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consistent with the expectation, as m1 → O(0.1 eV) corresponds to the near degenerate
regime for the neutrino masses, where an enhanced correction to the mixing angle is
expected.

In contrast to the case of θ13, the changes of θ12 and θ23 are predicted to be zero if one
uses the linear extrapolation of their changes starting from the tri–bi–maximal mixing
pattern. However, as we have seen above, θ13 can undergo a substantial change such
that also the other two mixing angles change due to higher order non-linear terms. We
have confirmed this behavior numerically, using the MixingParameterTools package [13].
The dependence of the change on the lightest neutrino mass m1 is shown in figure 3.
Both changes are significantly smaller than the one of θ13.

A further interesting consequence of the Kähler correction is the generation of CP
violation. It arises due to the fact that the matrix PV is complex. In fact, the Dirac CP
phase δ, which is not properly defined for exact tri–bi–maximal mixing due to θ13 = 0, is
close to δ = 3π/2 taking into account the corrections. Note that similar relations can also
be obtained from the holomorphic superpotential in models with T ′ flavor symmetry [14].

The chosen example illustrates that predictions which are solely based on the in-
spection of the superpotential are not very reliable. Indeed, for example, the global fit
value for θ13 =

(

8.93+0.46
−0.48

)◦
[10] (cf. table 2.1) can be accommodated without resorting

to higher–order contributions from the superpotential, provided the neutrino mass spec-
trum is not too hierarchical, the ratio of flavon VEV to the fundamental scale v/Λ is of
the order of the Cabibbo angle and the Kähler coefficient κV is of order one.

Our result also shows that the Kähler corrections can be more significant than the
effects of the RG evolution.
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Corresponding Change in θ23
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Figure 3: Changes of (a) θ12 and (b) θ23 due to the Kähler correction ∆K shown in
equation (3.8) for κV v2/Λ2 = (0.2)2 computed numerically.

4 Conclusions

We have carefully re–examined models in which different flavons appear to break a given
flavor symmetry GF down to different subgroups in different sectors of the theory. In the
context of supersymmetric settings, the fact that there is no residual symmetry in the
full Lagrangean manifests itself in corrections to the Kähler potential K that break GF

in all subsectors. We have argued that the corresponding higher–order terms in K are, in
a way, unavoidable as they cannot be forbidden by any (conventional) symmetry. These
terms come with certain coefficients, which are not determined by the symmetries of the
model and, therefore, introduce additional continuous parameters. We have also argued
that the Kähler corrections are generically much larger and, therefore, more relevant
than renormalization effects, which can also be understood as Kähler corrections along
a very specific direction.

In order to make our analysis more concrete, we have outlined the discussion of
the corrections in a model based on the flavor symmetry GF = A4 × 4 [8]. We have
presented the first results of an analytic discussion of the Kähler corrections, i.e. a simple
analytic formula that allows us to express the change in the prediction on the mixing
parameters induced by the respective flavon VEVs. While leaving the full discussion
for a future publication [4], we have explicitly shown that in the simple A4 model,
which predicts tri–bi–maximal mixing at leading order, one of the flavon VEVs induces
a large variation of the mixing angle θ13 while leaving the other mixing angles essentially
unchanged. An optimistic interpretation of this possibility may amount to the statement
that even simple models like the one discussed here can be consistent with the recent
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Figure 2: Change of θ13 due to the Kähler correction ∆K shown in equation (3.8) for
κV v2/Λ2 = (0.2)2. The continuous line shows the result of equation (3.9), which was
obtained using a linear approximation (cf. section 3.4), while the dashed line shows the
result of a numerical computation. As one can see, the linear approximation yields a
very accurate estimate on the true change ∆θ13.

consistent with the expectation, as m1 → O(0.1 eV) corresponds to the near degenerate
regime for the neutrino masses, where an enhanced correction to the mixing angle is
expected.

In contrast to the case of θ13, the changes of θ12 and θ23 are predicted to be zero if one
uses the linear extrapolation of their changes starting from the tri–bi–maximal mixing
pattern. However, as we have seen above, θ13 can undergo a substantial change such
that also the other two mixing angles change due to higher order non-linear terms. We
have confirmed this behavior numerically, using the MixingParameterTools package [13].
The dependence of the change on the lightest neutrino mass m1 is shown in figure 3.
Both changes are significantly smaller than the one of θ13.

A further interesting consequence of the Kähler correction is the generation of CP
violation. It arises due to the fact that the matrix PV is complex. In fact, the Dirac CP
phase δ, which is not properly defined for exact tri–bi–maximal mixing due to θ13 = 0, is
close to δ = 3π/2 taking into account the corrections. Note that similar relations can also
be obtained from the holomorphic superpotential in models with T ′ flavor symmetry [14].

The chosen example illustrates that predictions which are solely based on the in-
spection of the superpotential are not very reliable. Indeed, for example, the global fit
value for θ13 =

(

8.93+0.46
−0.48

)◦
[10] (cf. table 2.1) can be accommodated without resorting

to higher–order contributions from the superpotential, provided the neutrino mass spec-
trum is not too hierarchical, the ratio of flavon VEV to the fundamental scale v/Λ is of
the order of the Cabibbo angle and the Kähler coefficient κV is of order one.

Our result also shows that the Kähler corrections can be more significant than the
effects of the RG evolution.
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A Novel Origin of CP Violation

• Conventionally:

• explicit CP violation: complex Yukawa couplings

• spontaneous CP violation: complex Higgs VEVs

• Complex CG coefficients in discrete groups ⇒  explicit CP violation in quark and lepton 
sectors (e.g. δ ≠ 0)

• Conditions for a discrete group to admit real CG’s 

29

M.-C.C, K.T. Mahanthappa, Phys. Lett. B681, 444 (2009); 
M.-C.C, M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner, Nucl. Phys. B (2014)

Bickerstaff, Damhus, 1985 

Fermion Mass Generation

• Yukawa Interactions

• LH and RH particles mix and 
interact with Higgs VEV to 
acquire a mass

• In Standard Model: no RH 
neutrinos

• LH neutrinos cannot interact 
with Higgs VEV

• neutrinos stay massless

9
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∃ automorphism u, such that  λk(R) = λk(u(R))∗  for all R ∊ G 

Group theory of CP violation Generalizing CP transformations

The Bickerstaff–Damhus automorphism (BDA)

The Bickerstaff–Damhus automorphism (BDA)
Bickerstaff and Damhus (1985)

+ Bickerstaff–Damhus automorphism (BDA) u

⇢ri (u(g)) = Uri ⇢ri(g)⇤U†ri
8 g 2 G and 8 i ( ? )

unitary and symmetric
+ BDA vs. Clebsch–Gordan (CG) coefficients

9 BDA u
fulfilling (?)

existence of a
(CP) basis in which
all CG coefficients

are real

equivalent

CP basis : ⇢ri (u(g)) = ⇢ri(g)⇤ 8 g 2 G and 8 i
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A Novel Origin of CP Violation

• more generally, for discrete groups that do not have class-inverting, involutory 
automorphism, CP is generically broken by complex CG coefficients (Type I Group)

• Non-existence of such automorphism ⇔ physical CP violation

30

Discrete Family Symmetries and Origin of CP Violation Introduction

Main messages of the previous talk

Main messages of the previous talk

+ Not every outer automorphism defines a physical CP transformation!

+ Three types of groups

Discrete (flavor)
symmetry G

Type I groups GI:

generic settings based on
GI do not allow for a
physical CP transformation

Type II: one can
impose a physical
CP transformation

Type II A groups GII A:

there is a CP basis in
which all CG’s are real

Type II B groups GII B:

there is no basis in which
all CG’s are real

M.-C.C, M. Fallbacher, K.T. Mahanthappa, 
M. Ratz, A. Trautner, NPB (2014)

CP Violation from Group Theory!
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Three Types of Finite Groups
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Discrete Family Symmetries and Origin of CP Violation Introduction

Main messages of the previous talk

Main messages of the previous talk

+ Not every outer automorphism defines a physical CP transformation!

+ Three types of groups

Discrete (flavor)
symmetry G

Type I groups GI:

generic settings based on
GI do not allow for a
physical CP transformation

Type II: one can
impose a physical
CP transformation

Type II A groups GII A:

there is a CP basis in
which all CG’s are real

Type II B groups GII B:

there is no basis in which
all CG’s are real

CP conserving models can be
constructed by:

• introducing only special
subsets of
representations

• enlarging the symmetry
non–trivially beyond the
type I symmetry
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Three Types of Finite Groups
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Discrete Family Symmetries and Origin of CP Violation Introduction

Main messages of the previous talk

Main messages of the previous talk

+ Not every outer automorphism defines a physical CP transformation!

+ Three types of groups

Discrete (flavor)
symmetry G

Type I groups GI:

generic settings based on
GI do not allow for a
physical CP transformation

Type II: one can
impose a physical
CP transformation

Type II A groups GII A:

there is a CP basis in
which all CG’s are real

Type II B groups GII B:

there is no basis in which
all CG’s are real

• the CP basis may
not be the most
convenient choice
for performing
computations

• CP invariance
restricts the
phases of coupling
coefficients
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Three Types of Finite Groups

33

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

Discrete Family Symmetries and Origin of CP Violation Introduction

Main messages of the previous talk

Main messages of the previous talk

+ Not every outer automorphism defines a physical CP transformation!

+ Three types of groups

Discrete (flavor)
symmetry G

Type I groups GI:

generic settings based on
GI do not allow for a
physical CP transformation

Type II: one can
impose a physical
CP transformation

Type II A groups GII A:

there is a CP basis in
which all CG’s are real

Type II B groups GII B:

there is no basis in which
all CG’s are real

• CP may enlarge
the group (trivially)
to GII B o N

• CP invariance may
forbid certain
coupling
coefficients
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Examples

• Type I: all odd order non-Abelian groups

• Type IIA: dihedral and all Abelian groups

• Type IIB

34

group 5 o 4 T7 �(27) 9 o 3

SG (20,3) (21,1) (27,3) (27,4)

(a) Examples for type I groups. Generally,
all odd order non–Abelian groups are of this
type with the caveat of groups that have a
class–inverting automorphism that squares
to a non–trivial outer one.

group S3 Q8 A4 3 o 8 T0 S4 A5

SG (6,1) (8,4) (12,3) (24,1) (24,3) (24,12) (60,5)

(b) Examples for type II A groups. The dihedral and all Abelian
groups are also of this type.

group ⌃(72) (( 3 ⇥ 3)o 4)o 4

SG (72,41) (144,120)

(c) Examples for type II B groups.

Table 2.1: Examples for the three types of groups: (a) I, (b) II A and (c) II B with their
common names and SmallGroups library ID of GAP [15].

with unitary W and

⌃ =

8
>>>>>>><

>>>>>>>:

⌃+ = , if U is symmetric,

⌃� =

0

BBBBB@

1
�1

. . .
1

�1

1

CCCCCA
, if U is anti–symmetric.

(2.38)

Note that, since representation matrices always have full rank, the anti–symmetric case
does not arise for odd–dimensional irreps [20], i.e. ⌃ always has full rank. We can, hence,
perform the unitary basis change

r
i

! W †
r
i

r
i

, ⇢r
i

(g) ! W †
r
i

⇢r
i

(g)Wr
i

8 g 2 G , (2.39)

such that in the new basis the matrices Ur
i

take the simple form

Ur
i

! W †
r
i

Ur
i

W ⇤
r
i

= ⌃r
i

. (2.40)

For type II A groups, all the ⌃r
i

’s equal the identity matrix and the new basis is a CP
basis. In this basis all Clebsch–Gordan coe�cients are real [16].
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Example for a type I group:

�(27)
• decay asymmetry in a toy model
• prediction of CP violating phase from group theory
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Toy Model based on Δ(27)

• Field content

• Interactions

36

Discrete Family Symmetries and Origin of CP Violation Example for a type I group: �(27)

Decay amplitudes in a toy example based on �(27)

Decay amplitudes in a toy example based on �(27)

+ Fields

field S X Y  ⌃
�(27) 10 11 13 3 3
U(1) q � q⌃ q � q⌃ 0 q q⌃

fermion

fermion

q � q⌃ , 0+ Interactions

Ltoy = f
h
S10 ⌦

�
 ⌃

�
10

i

10
+ g

h
X11 ⌦

�
 ⌃

�
12

i

10

+ h 
h
Y13 ⌦

�
  

�
16

i

10
+ h⌃

h
Y13 ⌦

�
⌃⌃

�
16

i

10
+ h.c.

= Fij S i⌃j + Gij X  i⌃j + Hij
 

Y  i j + Hij
⌃

Y ⌃i⌃j + h.c.

F = f 3

G = g

0

@
0 1 0
0 0 1
1 0 0

1

A

H /⌃ = h /⌃

0

@
1 0 0
0 !2 0
0 0 !

1

A

with ! := e2⇡ i/3
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Toy Model based on Δ(27)

• Particle decay

37
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Decay amplitudes in a toy example based on �(27)

Decay asymmetry

+ Decay Y !   

interference of

Y

 

 

H 

with

⌃

⌃

SY

 

 

H⌃

F †

F

⌃

⌃

XY

 

 

H⌃

G†

G

"Y!  = |f |2 Im
⇥
IS
⇤

Im
⇥
h h⇤⌃

⇤
+ |g|2 Im

⇥
IX

⇤
Im

⇥
!h h⇤⌃

⇤

one–loop integral IS = I(MS,MY )

one–loop integral IX = I(MX ,MY )invariant under rephasing of the fields

independent of the phases of f and g
+ Cancellation requires delicate adjustment of the relative phase
' := arg(h h⇤⌃)

+ Im
⇥
IS
⇤
, Im

⇥
IX

⇤
y ' not stable under quantum corrections

+ Im
⇥
IS
⇤
= Im

⇥
IX

⇤
& |f | = |g|y ' stable under quantum corrections

equality would require MX = MS

cannot be ensured by outer automorphism of �(27)
bottom–line:
model based on �(27) violates CP!
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Decay Asymmetry

• Decay asymmetry

• cancellation requires delicate adjustment of relative phase
• for non-degenerate MS and MX: 

• phase φ unstable under quantum corrections 
• for 

• phase φ stable under quantum corrections 
• relations cannot be ensured by outer automorphism of Δ(27) 
• require symmetry larger than Δ(27)
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Decay amplitudes in a toy example based on �(27)

CP conservation vs. symmetry enhancement

+ replace S ⇠ 10 by Z ⇠ 18 y interaction

L Z
toy = g0

h
Z18 ⌦

�
 ⌃

�
14

i

10
+ h.c. = (G0)ij Z i⌃j + h.c.

G0 = g0

0

@
0 0 !2

1 0 0
0 ! 0

1

A

and leads to new interference diagram

⌃

⌃

SY

 

 

H⌃

F †

F

!

⌃

⌃

ZY

 

 

H⌃

G0†

G0

Â different contribution to decay asymmetry:

+ total CP asymmetry of the Y decay vanishes if

8
<

:

(i) MZ =MX
(ii) |g| = |g0|
(iii) ' = 0

' = arg(h h⇤⌃)
+ relations (i)—(iii) can be due to an outer automorphism

X
u3 ! Z , Y

u3��! Y ,  u3��! Uu3 ⌃
C & ⌃

u3��! Uu3  
C

Uu3 =

0

@
1 0 0
0 !2 0
0 0 !2

1

A

requires q⌃ = �q 

. . . BUT this enlarges �(27)! SG(54,5) ' �(27) o u3
2

SG(54,5): group name from GAP library

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)
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Decay amplitudes in a toy example based on �(27)
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Spontaneous CP violation with calculable CP phases

Spontaneous CP violation with calculable CP phases
field X Y Z  ⌃ �

�(27) 11 13 18 3 3 10
U(1) 2q 0 2q q �q 0

+ SG(54,5):

8
<

:

(X,Z) : doublet
( ,⌃C) : hexaplet
� : non–trivial 1–dim. representation

+ non–trivial h�i breaks SG(54,5)! �(27)

non–trivial 1i,0 under SG(54,5)

+ allowed coupling leads to mass splitting

Â CP asymmetry with calculable phases

"Y!  / |g|2 |h |2 Im
⇥
!

⇤ �
Im

⇥
IX

⇤
� Im

⇥
IZ
⇤�

phase predicted by group theory

Â group–theoretical origin of CP Chen and Mahanthappa (2009)
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+ SG(54,5):

8
<

:

(X,Z) : doublet
( ,⌃C) : hexaplet
� : non–trivial 1–dim. representation

+ non–trivial h�i breaks SG(54,5)! �(27)

non–trivial 1i,0 under SG(54,5)

+ allowed coupling leads to mass splitting

L �
toy � M2 �

|X |2 + |Z|2
�
+


µp
2
h�i

�
|X |2 � |Z|2

�
+ h.c.

�

CG coefficient of SG(54,5)

Â CP asymmetry with calculable phases

"Y!  / |g|2 |h |2 Im
⇥
!

⇤ �
Im

⇥
IX

⇤
� Im

⇥
IZ
⇤�

phase predicted by group theoryÂ group–theoretical origin of CP Chen and Mahanthappa (2009)

Group theoretical origin 
of CP violation!

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

M.-C.C., K.T. Mahanthappa (2009)
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Conclusions

• Discrete family symmetries: correlations among observables  
• Kähler corrections induced (and determined) by flavon VEVs (with order 

parameter ~ θc)
• similar in structure to RG corrections, but can be along different directions
• size of Kähler corrections generically dominate RG corrections (no loop 

suppression, contributions from copious heavy states)
• non-zero CP phases can be induced 
• additional parameters (Kähler coefficients) introduced

• robustness of model predictions diminished given the presence of these 
potentially sizable corrections and new parameters

• theoretical understanding of Kähler corrections crucial for achieving precision 
compatible with experimental accuracy   
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Discrete Family Symmetries and Origin of CP Violation Summary

Outlook

group–theoretic

CP
violation

baryonic
CP

violation

leptonic
CP

violation

baryogenesisstrong CP
problem

?

stringy
origin of

type I
groups

?

(Type I) Discrete groups afford a new origin of CP violation:
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Origin of CP Violation

• CP violation ⇔ complex mass matrices

• Conventionally, CPV arises in two ways:
•  Explicit CP violation: complex Yukawa coupling constants Y
• Spontaneous CP violation: complex scalar VEVs  <h>

• A New Origin of CP Violation in discrete groups: 
• complex CG coefficients

• Canonical CP transformation
• for a scalar field:

3

which is parametrized by two parameters, giving the
three absolute neutrino masses [9] (see below). As these
interactions involve only the triplet representations of T ′,
the relevant product rule is 3 ⊗ 3. Consequently, all CG
coefficients are real, leading to a real neutrino Majo-
rana mass matrix. The neutrino mass matrix given in
Eq. 16 has the special property that it is form diagonal-
izable [14], i.e. independent of the values of ξ0 and u0, it
is diagonalized by the tri-bimaximal mixing matrix,

UT
TBM

MνUTBM = diag(u0 + 3ξ0, u0,−u0 + 3ξ0)
v2

u

MX
,

≡ diag(m1, m2, m3) . (17)

While the neutrino mass matrix is real, the complex
charged lepton mass matrix Me, which is diagonalized
by, V †

e,RMeVe,L = diag(me, mµ, mτ ), leads to a complex

VPMNS = V †
e,LUTBM (see below).

CPT Invariance and CP Violation.—Even though the
complexity of the Lagrangian arises in our model through
the complex CG coefficients, the hermiticity of the La-
grangian, which is required in order to have CPT invari-
ance, remains satisfied. This is easily seen using the com-
ponent form given in Eq. 11. Take the term URMuQL

for example. Its corresponding hermitian conjugate is

(URMuQL)† = (U †
Rγ0MuQL)† = QLM †

uUR . (18)

The hermiticity of the Lagrangian allows us to write, in
general,

L(#x, t) = αO(#x, t) + α∗
O

†(#x, t) , (19)

where O(#x, t) is some operator and α is some c-number.
Recall that, the charge conjugation C changes a left-
hande particle into a left-hande anti-particle, while the
parity P turns a left-handed particle into a right-handed
particle, and vice versa. Thus the CP transformation
converts a left-handed particle into a right-handed anti-
particle. Effectively,

O(#x, t)
CP−→ O

†(−#x, t) , α
CP−→ α , (20)

The time reversal operator is antiunitary. It reverses the
momentum of a particle and flips its spin. Effectively,

O(#x, t)
T−→ O(#x,−t) , α

T−→ α∗ , (21)

In the weak eigenstates, the interactions Lcc in Eq. 15 are
invariant under CP and T, as all coupling constants are
real. On the other hand, the Yukawa interactions violate
both CP and T. Using the up-quark sector again as an
example, for each conjugate pair specified by indices i
and j,

UR,i(Mu)ijQL,j + QL,j(M
†
u)jiUR,i

CP−→ QL,j(Mu)ijUR,i + UR,i(Mu)∗ijQL,j , (22)

UR,i(Mu)ijQL,j + QL,j(M
†
u)jiUR,i

T−→ UR,i(Mu)∗ijQL,j + QL,j(Mu)ijUR,i , (23)

The complexity of the mass matrix, giving rise to CP and
T violations, ensues from the complex CG coefficients in
T ′. Here we have suppressed the space-time coordinates
the inversions of which under the transformations are as-
sumed implicitly. Due to its hermiticity, the Lagrangian
is CPT invariant,

URMuQL +QLM †
uUR

CPT−→ QLM †
uUR +URMuQL , (24)

Alternatively, in the mass eigenstates, the Yukawa inter-
actions are invariant under CP and T, while the charged
current interactions violate CP and T individually and
are invariant under CPT. Note that CP violation is in-
herent in the Lagrangian Eq.3, which is T ′ and SU(5)
invariant.

Numerical Predictions.—The predicted charged
fermion mass matrices in our model are parametrized in
terms of 7 parameters,

Mu

ytvu
=







ig 1−i
2

g 0
1−i
2

g g + (1 − i
2
)h k

0 k 1






, (25)

Md, MT
e

ybvdφ0ζ0
=







0 (1 + i)b 0

−(1 − i)b (1,−3)c 0

b b 1






, (26)

With b ≡ φ0ψ′
0/ζ0 = 0.0029, c ≡ ψ0N0/ζ0 = −0.0169,

k ≡ y′ψ0ζ0 = −0.029, h ≡ φ2
0 = 0.008 and g ≡ φ′3

0 =
−9 × 10−6, the following mass ratios are obtained, md :
ms : mb & θ4.7

c : θ2.7

c : 1, mu : mc : mt & θ8

c : θ3.2

c : 1,
with θc &

√

md/ms & 0.225. (These ratios in terms
of θc coincide with those give in [15].) We have also
taken yt = 1 and ybφ0ζ0 & mb/mt & 0.011. As a result
of the GJ relations, realistic charged lepton masses are
obtained. Making use of these parameters, the complex
CKM matrix is,







0.975e−i26.8o

0.225ei21.1o

0.00293ei164o

0.224ei124o

0.974e−i8.19o

0.032ei180o

0.00557ei103o

0.0317e−i7.33o

0.999






. (27)

The values for |VCKM | elements are in agreement with
current experimental values. The predictions of our
model for the angles in the unitarity triangle and the
Jarlskog invariant in the quark sector are,

β ≡ arg

(

−VcdV ∗
cb

VtdV ∗
tb

)

= 21.3o, sin 2β = 0.676 , (28)

α ≡ arg

(

−VtdV ∗
tb

VudV ∗
ub

)

= 114o , (29)

γ ≡ arg

(

−VudV ∗
ub

VcdV ∗
cb

)

= δq = 44.9o , (30)

J ≡ Im(VudVcbV
∗
ubV

∗
cs) = 1.45 × 10−5 , (31)

where δq is the CP phase in the standard parametriza-
tion. In terms of the Wolfenstein parameters, we have
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Group theory of CP violation Generalizing CP transformations

The canonical CP transformation

The canonical CP transformation

+ scalar field operator

�(x) =
Z

d3p
1

2E~p

⇥
a(~p) e�i p·x + b†(~p) ei p·x⇤

annihilates particlecreates anti–particle
+ CP exchanges particles and anti–particles

(C P)�1 a(~p)C P = ⌘CP b(�~p) & (C P)�1 a†(~p)C P = ⌘⇤CP b†(�~p)

(C P)�1 b(~p)C P = ⌘⇤CP a(�~p) & (C P)�1 b†(~p)C P = ⌘CP a†(�~p)

phase factor
+ CP transformation of (scalar) fields

�(x)
C P7���! ⌘CP �⇤(Px)

freedom of re–phasing fields

M.-C. C, M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)
M.-C. C.,  K.T. Mahanthappa (2009)
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Group theory of CP violation Generalizing CP transformations

Generalized CP transformations

Generalized CP transformations

+ setting w/ discrete symmetry G

+ generalized CP transformation
Holthausen, Lindner, and Schmidt (2013)

+ invariant contraction/coupling in A4 or T0

⇥
�12 ⌦ (x3 ⌦ y3)11

⇤
10
/ �

�
x1 y1 + !

2 x2 y2 + ! x3 y3
�

! = e2⇡ i/3
+ canonical CP transformation maps A4/T0 invariant contraction to

something non–invariant

Â need generalized CP transformation fCP: �
fCP7��! �⇤ as usual but

0

@
x1
x2
x3

1

A fCP7��!

0

B@
x⇤1
x⇤3
x⇤2

1

CA &

0

@
y1
y2

y3

1

A fCP7��!

0

B@
y⇤1
y⇤3
y⇤2

1

CA
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x
CP7��! x⇤ & y

CP7��! y⇤ & �
CP7��! �⇤

maps A4/T0 invariant contraction to something non–invariant

Â need generalized CP transformation fCP: �
fCP7��! �⇤ as usual but
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How (Not) to Generalize CP 

•

47

Group theory of CP violation Generalizing CP transformations

CP vs. CP–like transformations

How (not) to generalize CP

proper CP transformations
+ map field operators to their own

Hermitean conjugates

+ violation of physical CP is
prerequisite for a non–trivial

"i!f =

���
�
i! f

���2 �
����

⇣
ı! f

⌘���
2

���
�
i! f

���2 +
����

⇣
ı! f

⌘���
2

anti–particles

particlesÂ connection to observed CP,
baryogenesis & . . .

CP–like transformations
+ map some field operators to

some other operators

+ such transformations have
sometimes been called
“generalized CP
transformations” in the literature

+ however, imposing CP–like
transformations does not imply
physical CP conservation

Â NO connection to observed
CP, baryogenesis & . . .

+ explicit example in talk by
Mu–Chun Chen
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Physical CP Transformation

•

48

Discrete Family Symmetries and Origin of CP Violation Introduction

Main messages of the previous talk

Main messages of the previous talk

+ Not every outer automorphism defines a physical CP transformation!

outer automorphisms

(generalized)

CP trans-

formations

proper CP transformations:

class–inverting automorphisms of G

+ Three types of groups

Discrete (flavor)
symmetry G

Type I groups GI:

generic settings based on
GI do not allow for a
physical CP transformation

Type II: one can
impose a physical
CP transformation

Type II A groups GII A:

there is a CP basis in
which all CG’s are real

Type II B groups GII B:

there is no basis in which
all CG’s are real

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)
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Twisted Frobenius-Schur Indicator

• How can one tell whether or not a given automorphism is a BDA?
• Frobenius-Schur indicator:

• Twisted Frobenius indicator

49

Group theory of CP violation Generalizing CP transformations

The Bickerstaff–Damhus automorphism (BDA)

The twisted Frobenius–Schur indicator

+ How can one tell whether or not a given automorphism u is a BDA?

+ Frobenius–Schur indicator

FS(ri) :=
1
|G|

X

g2G
�ri(g

2) =
1
|G|

X

g2G
tr
⇥
⇢ri(g)2⇤

Bickerstaff and Damhus (1985); Kawanaka and Matsuyama (1990)

+ twisted Frobenius–Schur indicator

FSu(ri) =
1
|G|

X

g2G

⇥
⇢ri(g)

⇤
↵�

⇥
⇢ri(u(g))

⇤
�↵

+ crucial property

FSu(ri) =

8
<

:

+1 8 i, if u is a BDA,
+1 or � 1 8 i, if u is class–inverting and involutory,
different from ±1, otherwise.
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Decay Asymmetry

• Decay asymmetry

• properties of ε
• invariant under rephasing of fields
• independent of phases of f and g
• basis independent

50

✏Y!�� =
�(Y ! ��)� �(Y ⇤ ! ��)

�(Y ! ��) + �(Y ⇤ ! ��)
(1)

1

Let us now study the decay Y !   . Interference between tree–level and one–loop
diagrams (figures 3(a)– 3(c)) leads to a CP asymmetry "

Y!  , which is proportional to

"
Y!  / Im [I

S

] Im
h
tr
⇣
F † H F H†

⌃

⌘i
+ Im [I

X

] Im
h
tr
⇣
G† H GH†

⌃

⌘i

= |f |2 Im [I
S

] Im [h h
⇤
⌃] + |g|2 Im [I

X

] Im [! h h
⇤
⌃] . (3.3)

Here I
S

= I(M
S

,M
Y

) and I
X

= I(M
X

,M
Y

) denote appropriate phase space factors and
the loop integral, which are non–trivial functions of the masses of S and Y , and X and
Y , respectively. Note that "

Y!  is

(i) invariant under rephasing of the fields,

(ii) independent of the phases of f and g, and

(iii) independent of the chosen basis as it is proportional to the trace of coupling ma-
trices.

Notice, however, that the asymmetry can vanish if there is a cancellation between the two
terms, which would require a delicate adjustment of the relative phase ' := arg(h h⇤

⌃)
of h and h⌃. In what follows, we will argue that if such a cancellation occurs, this is
either (i) a consequence of a larger discrete symmetry than �(27) being present or (ii)
it is not immune to quantum corrections.

In the first case, a new symmetry has to be present which relates S and X in such
a way as to guarantee M

S

= M
X

and |g| = |f |, as well as h and h⌃ to warrant
' = �2⇡/6. Clearly, this cannot be due to an outer automorphism and, hence, no CP
transformation of a�(27) setup since such transformations never relate the trivial singlet
10 to other representations. If such a symmetry exists, it has to enhance the original
flavor symmetry of the setup, and it is, therefore, no longer appropriate to speak of a
�(27) model.

In the second case, given that Im [I
S

] 6= Im [I
X

] for M
S

6= M
X

, an adjustment which
cancels the asymmetry will require arg(h h⇤

⌃) to be di↵erent from �2⇡/6 in general.
Note that the diagrams of figures 3(b) and 3(c) also yield vertex corrections which are
relevant for the renormalization group equations (RGEs) for h and h⌃. These equations
are given by11

16⇡2 dh 
dt

= h 
�
a |h |2 + b |h⌃|2 + . . .

�
+ c h⌃

⇥|f |2 + !2 |g|2⇤ , (3.4a)

16⇡2 dh⌃
dt

= h⌃
�
a |h⌃|2 + b |h |2 + . . .

�
+ c h 

⇥|f |2 + ! |g|2⇤ , (3.4b)

where t = ln(µ/µ0) is the logarithm of the renormalization scale, a, b and c are real
coe�cients, and the omission represents terms like the square of the gauge coupling.
This leads to an RGE for h h⇤

⌃ with the structure

16⇡2 d

dt
(h h

⇤
⌃) = h h

⇤
⌃ ⇥ real + c

�|h |2 + |h⌃|2
� ⇥|f |2 + !2 |g|2⇤ . (3.5)

11Note that GH /⌃G† = !2 H /⌃.
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Some Outer Automorphisms of Δ(27)

• sample outer automorphisms of Δ(27)

• twisted Frobenius-Schur indicators

• none of the ui maps all representations to their conjugates
• however, it is possible to impose CP in (non-generic) models, where only a 

subset of representations are present, e.g. 

51

Discrete Family Symmetries and Origin of CP Violation Example for a type I group: �(27)

Decay amplitudes in a toy example based on �(27)

Some of the outer automorphisms of �(27)

+ sample outer automorphisms of �(27)

u1 : 11 $ 12 , 14 $ 15 , 17 $ 18 , 3! Uu1 3⇤

u2 : 11 $ 14 , 12 $ 18 , 13 $ 16 , 3! Uu2 3⇤

u3 : 11 $ 18 , 12 $ 14 , 15 $ 17 , 3! Uu3 3⇤

u4 : 11 $ 17 , 12 $ 15 , 13 $ 16 , 3! Uu4 3⇤

u5 : 1i $ 1i
⇤ , 3! Uu5 3

+ twisted Frobenius–Schur indicators

recall

FSu(ri) =
1
|G|

X

g2G

⇥
⇢ri(g)

⇤
↵�

⇥
⇢ri(u(g))

⇤
�↵

crucial property

FSu(ri) =

8
>><

>>:

+1 8 i, if u is a BDA,
+1 or � 1 8 i, if u is class–inverting

and involutory,
different from ±1, otherwise.

Bickerstaff–Damhus automorphism (BDA) u

⇢ri (u(g)) = Uri ⇢ri(g)⇤U†ri
8 g 2 G and 8 i

w/ unitary symmetric Uri

R 10 11 12 13 14 15 16 17 18 3 3
FSu1 (R) 1 1 1 0 0 0 0 0 0 1 1
FSu2 (R) 1 0 0 1 0 0 1 0 0 1 1
FSu3 (R) 1 0 0 0 0 1 0 1 0 1 1
FSu4 (R) 1 0 0 1 0 0 1 0 0 1 1
FSu5 (R) 1 1 1 1 1 1 1 1 1 0 0

Â none of the ui maps all representations to their conjugates

+ however, it is possible to impose CP for models in which only
subsets of the representations are introduced, e.g.
{ri} ⇢ {10,15,17,3,3}

+ CP conservation in non–generic �(27) models possible
e.g. some well–known multi–Higgs models Branco, Gerard, and Grimus (1984)
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