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We examine the importance of baryonic feedback e↵ects on the matter power spectrum on small
scales, and the implications for the precise measurement of neutrino masses through gravitational
weak lensing. Planned large galaxy surveys such as the Large Synoptic Sky Telescope (LSST) are
expected to measure the sum of neutrino masses to extremely high precision, su�cient to detect
non-zero neutrino masses even in the minimal mass normal hierarchy. We show that weak lensing
of galaxies while being a very good probe of neutrino masses, is extremely sensitive to baryonic
feedback processes. We use publicly available results from the Overwhelmingly Large Simulations
(OWLS) project to investigate the e↵ects of active galactic nuclei feedback, the nature of the stellar
initial mass function, and gas cooling rates, on the measured weak lensing shear power spectrum.
Using the Fisher matrix formalism and priors from CMB+BAO data, we show that when one does
not account for feedback, the measured neutrino mass may be substantially larger or smaller than
the true mass, depending on the dominant feedback mechanism. We also consider gravitational
lensing of the cosmic microwave background (CMB) and show that it is essentially insensitive to
baryonic feedback on scales ` < 2000. A combination of weak galaxy lensing and CMB lensing,
along with detailed theoretical modeling will be required to accurately measure neutrino masses.

PACS numbers:

I. INTRODUCTION

The discovery of neutrino masses provides exciting
hints of physics beyond the standard model. The Sud-
bury Neutrino Observatory (SNO) [1, 2] has detected so-
lar neutrinos at high significance through charged cur-
rent, neutral current, and elastic scattering reactions,
providing strong evidence for neutrino oscillations, and
hence for non-zero neutrino masses. This solar neu-
trino oscillation explained by the Mikheyev-Smirnov-
Wolfenstein (MSW) e↵ect [3, 4] is also manifested in the
form of a deficit of reactor anti-neutrinos measured by the
KamLAND collaboration [5, 6]. On the other hand, anal-
ysis of atmospheric neutrinos by Super-Kamiokande [7, 8]
also shows evidence for neutrino oscillations, but implies
a much larger squared mass di↵erence. The combined
data yields a squared mass di↵erence �m2

21 ⇡ 7.6⇥10�5

ev2, and �m2
31 ⇡ 2.4 ⇥ 10�3 eV2 [9]. Together, these

measurements imply the existence of at least two massive
neutrinos with two possible hierarchies. In the normal hi-
erarchy, two neutrinos are nearly degenerate in mass and
much lighter than the third neutrino, with a total mass
⌃m⌫ > 0.058 eV. The inverted hierarchy has two neu-
trinos nearly degenerate in mass, and much heavier than
the third neutrino. The sum of masses in this case is
⌃m⌫ > 0.089 eV.

Cosmology provides an upper bound to the sum of

⇤
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neutrino masses through precise measurements of the
power spectrum of matter fluctuations, and the cos-
mic microwave background (CMB). Neutrinos decou-
pled from thermal equilibrium while still relativistic,
and constitute hot dark matter. Large neutrino masses
therefore result in a damping of the small scale mat-
ter power spectrum. They also modify the size of the
sound horizon at decoupling, and can be constrained
through the location of the CMB peaks, and Baryonic
Acoustic Oscillation (BAO) measurements. The Planck
collaboration obtained a limit on the sum of neutrino
masses ⌃m⌫ < 0.23 eV at the 95% confidence level
[10] using CMB+BAO data. When Lyman-↵ data is
included, Ref. [11] found an upper limit ⌃m⌫ < 0.17
eV at 95% confidence. Authors [12] also found an up-
per limit of ⌃m⌫ < 0.17 eV at 95% confidence us-
ing Planck+BAO+HST+WiggleZ data. Galaxy angular
power spectrum data from the Canada-France-Hawaii-
Telescope Legacy Survey was used to place boundsP

m⌫ < 0.29 eV at 95% confidence [13]. The South
Pole Telescope (SPT) [14] however, reported the de-
tection of non-zero neutrino masses at the 3� level us-
ing CMB+BAO+H0+SPTCL data, favoring a mass sumP

m⌫ = 0.32± 0.11 eV. More recently, the Sloan Digital
Sky Survey [15] found results favoring a neutrino mass
sum

P
m⌫ = 0.36 ± 0.10 eV from the Baryon Oscilla-

tion Spectroscopic Survey (BOSS) CMASS Data Release
11, in good agreement with the results from the SPT
experiment. If these exciting results are confirmed by
future experiments, they would have major implications
for both particle physics and cosmology. It is therefore
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Figure 5 Reconstructed matter power spectrum: the stars show the power spectrum from combining ACT and WMAP data (top panel). The solid and dashed lines
show the nonlinear and linear power spectra, respectively, from the best-fit ACT ΛCDM model with spectral index of ns = 0.96 computed using CAMB and
HALOFIT (Smith et al. 2003). The data points between 0.02 Mpc−1 < k < 0.19 Mpc−1 show the SDSS DR7 LRG sample and have been deconvolved from their
window functions, with a bias factor of 1.18 applied to the data. This has been rescaled from the Reid et al. (2010) value of 1.3, as we are explicitly using the
Hubble constant measurement from Riess et al. (2011) to make a change of units from h−1 Mpc to Mpc. The constraints from CMB lensing (Das et al. 2011b), from
cluster measurements from ACT (Sehgal et al. 2011), CCCP (Vikhlinin et al. 2009), and BCG halos (Tinker et al. 2012), and the power spectrum constraints from
measurements of the Lyα forest (McDonald et al. 2006) are indicated. The CCCP and BCG masses are converted to solar mass units by multiplying them by the
best-fit value of the Hubble constant, h = 0.738 from Riess et al. (2011). The bottom panel shows the same data plotted on axes where we relate the power spectrum
to a mass variance, ∆M/M, and illustrates how the range in wavenumber k (measured in Mpc−1) corresponds to range in mass scale of over 10 orders of magnitude.
In both cases a ΛCDM transfer function has been used to map P(k) onto the matter power spectrum. Also note that large masses correspond to large scales and hence
small values of k. This highlights the consistency of power spectrum measurements by an array of cosmological probes over a large range of scales.

the matter power spectrum are in fact averages over a range
of wavenumbers. For example, the ACT lensing constraint
is sensitive to a broad range of comoving distances between
2000 and 8000 Mpc (see Figure 2 of Sherwin et al. 2011),
with the lensing kernel spread peaked around ℓ ≈ 100. This
translates into a range of wave numbers between 0.01 ! k !
0.05. The upper and lower k bounds of the SDSS and Lyα

measurements are shown by the leftmost and rightmost points
of the slanted error bars in the top panel of Figure 5. The
cluster constraints will vary according to the range of masses
probed by each study (as the wavenumber kc is related to the
mass Mc through Equation (5)). For the CCCP survey, the
range of masses is 1.35 × 1014 M⊙ " Mc " 1.35 × 1015 M⊙
or 0.24 Mpc−1< kc < 0.51 Mpc−1. For the BCG analysis
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Excludes neutrinos from being all the DM !



Neutrino masses:

Cosmology:


!
      CMB + BAO (Planck)  m < 0.23 eV (95%)


        with Lyman Alpha  m < 0.17 eV



Neutrino masses:

Mass = 0.36 eV !!!
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ABSTRACT
We investigate the cosmological implications of the latest growth of structure mea-
surements from the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS Data
Release 11 with particular focus on the sum of the neutrino masses,

∑
mν . We examine

the robustness of the cosmological constraints from the Baryon Acoustic Oscillation
(BAO) scale, the Alcock-Paczynski effect and redshift-space distortions (DV /rs, FAP,
fσ8) of Beutler et al. (2013), when introducing a neutrino mass in the power spectrum
template. Any shift in the CMASS constraints is below 0.5σ when changing

∑
mν from

0 eV to 0.4 eV, which roughly represents the currently allowed range for this parame-
ter. We then discuss how the neutrino mass relaxes discrepancies between the Cosmic
Microwave Background (CMB) and other low-redshift measurements within ΛCDM.
Combining our cosmological constraints with WMAP9 yields

∑
mν = 0.36± 0.14 eV

(68% c.l.), which represents a 2.6σ preference for neutrino mass. The significance can
be increased to 3.3σ when including weak lensing results and other BAO constraints,
yielding

∑
mν = 0.35± 0.10 eV (68% c.l.). However, combining CMASS with Planck

data reduces the preference for neutrino mass to ∼ 2σ. When removing the CMB
lensing effect in the Planck temperature power spectrum (by marginalising over AL),
we see shifts of ∼ 1σ in σ8 and Ωm, which have a significant effect on the neutrino
mass constraints. In case of CMASS plus Planck without the AL-lensing signal, we
find a preference for a neutrino mass of

∑
mν = 0.34± 0.14 eV (68% c.l.), in excellent

agreement with the WMAP9+CMASS value. The constraint can be tightened to 3.4σ
yielding

∑
mν = 0.36 ± 0.10 eV (68% c.l.) when weak lensing data and other BAO

constraints are included. We also find that General Relativity becomes more consistent
with CMASS data if a neutrino mass is introduced.

Key words: surveys, cosmology: observations, cosmological parameters, large scale
structure of Universe

⋆ E-mail: fbeutler@lbl.gov
c⃝ 0000 RAS



The Large Synoptic Sky Telescope

1.  3200 Megapixel camera.


!
2.  20 Terabytes per night!


 


3.  Photometric data only.

!
LSST will measure neutrino masses very precisely!





Weak lensing - 



Weak lensing - 

m = 0.1 eV

m = 0.05 eV



But the matter power spectrum is not well known!

Baryons cause :


!
    a damping on intermediate scales.


    a boost on very small scales.


!
We need high res numerical simulations to study 
the baryon power spectrum on small scales.



But the matter power spectrum is not well known! 3
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FIG. 1: The square of the baryon bias, b2(k) = P

full

(k)/P
DM

(k), for redshifts z = 0,1,2. The black (solid), red (dashed), and
blue (dotted) curves show the e↵ect of baryonic feedback on the matter power spectrum, for feedback models #1, #2, and #3
respectively. The damping in the power spectrum is especially large for feedback model #1, while feedback model #3 shows a
boost on small scales. Power spectrum results were obtained from the OWLS project [22].

is that of WMAP-3: {⌦m = 0.238, ⌦b = 0.0418, ⌦⇤ =
0.762, �8 = 0.74, ns = 0.951, h = 0.73}. Radiative cool-
ing and heating are implemented. We consider 3 feed-
back models varying active galactic nuclei (AGN) feed-
back, star formation, and cooling rate, which provide ef-
fects representative of the wide range of e↵ects consid-
ered by [22]. Matter accreting onto supermassive black
holes emits enormous amounts of high energy radiation
which if coupled to the gas, can significantly alter the
clustering of matter on small scales. The AGN feedback
model used in the OWLS suite [22] is described in [33],
and involves placing a seed black hole in every dark mat-
ter halo whose mass exceeds a certain minimum value
mmin = 4 ⇥ 1010M�. Fifteen percent of the energy radi-
ated by the infalling matter is assumed to couple to the
surrounding gas, in order to match the observed cosmic
mass density in black holes, as well as the relation be-
tween black hole and galaxy mass, both at redshift zero.

Similarly details of star formation and cooling can
significantly influence the clustering of mater on small
scales. A top-heavy initial mass function (IMF) may be
expected in extreme environments such as the galactic
center, or in starburst galaxies (see Ref. [22] and refer-
ences therein). When the supernova (SN) energy scales
with emissivity of ionizing radiation, Ref. [22] find that a
top-heavy IMF yields 7.3 times more SN energy per unit
stellar mass, compared to the Chabrier IMF [34]. The
top-heavy IMF also yields more metal mass per stellar
mass, which increases metal line cooling rates, which in
turn increases the star formation rate.

It is also interesting to consider simulations that do not
include metal line cooling or SN driven winds. Except
at very high redshifts, the absence of metal line cooling
suppresses star formation. Authors [22] find that ignor-
ing metal cooling may decrease the total number of stars
by a factor of 2. Fig. 1 shows the square of the baryon

bias defined as:

b2(z, k) =
Pfull(z, k)

PDM(z, k)
, (5)

where Pfull(k) is the matter power spectrum including
feedback e↵ects, for three di↵erent feedback models, at
redshifts z = 0,1,2. Feedback model #1 includes AGN
feedback (labeled AGN in [22]). Feedback model #2 ac-
counts for a top-heavy IMF and extra SN energy (la-
beled DBLIMFV1618 in [22]), while Feedback model #3
has no SN feedback and cooling by primordial elements
only (labeled NOSN-NOZCOOL in [22]). As expected, the
model with AGN feedback (Model #1) shows the largest
damping in the power spectrum on small scales at z=0.
The model with no metal cooling or SN feedback (Model
#3) shows a boost in the power spectrum on small scales
due to adiabatic contraction of halos. The results seen in
the OWLS study show substantially larger damping than
what was estimated by [20], particularly for the case of
AGN feedback.

III. THE WEAK LENSING SHEAR POWER
SPECTRUM

The bending of light around massive objects results in
distortion and magnification of images, quantified by the
shear and convergence fields (for a detailed review, see
[35]). These e↵ects may be used to probe the properties
of the matter distribution between us and the source.
When the e↵ects are statistical in nature, i.e. when
they are apparent only when a large number of sources
are present, we are in the regime of weak gravitational
lensing. While galaxies are elliptical, they are randomly
aligned. Thus, when one averages over a large number
of galaxies, the residual ellipticity is a measure of the
weak lensing shear. The shear power spectrum consider-
ing sources in redshift bins i and j is given by (see for
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e.g. [35, 36]):

Pij(`) =
9

4

✓
H0

c

◆3

⌦2
m

Z 1

0

dz(1 + z)2p
⌦m(1 + z)3 + ⌦⇤

⇥ Wi(z)Wj(z)P

✓
0,

`

�

◆
D2(z)b2(z,

`

�
), (6)

where we have set k = `/�(z), where �(z) is the comoving
distance:

�(z) =

Z z

0

c dz

H(z)
. (7)

P (0, k) is the matter power spectrum at redshift z=0.
D(z) is the growth function of density perturbations
given by

D(z) = exp�
Z z

0

dz0

1 + z0 ⌦
�
m(z0), (8)

where � = 0.55, and the matter density at redshift z is

⌦m(z) =
⌦m(1 + z)3

⌦m(1 + z)3 + ⌦⇤
. (9)

b(z, k) is the baryon bias as defined in Eq. [17]. The
function Wi(z) is given by:

Wi(z) =

Z 1

z
dz0 ngal(z

0)⇠(z0, zi)

✓
1 � �(z)

�(z0)

◆
. (10)

ngal(z) describes the redshift distribution of the source
galaxies normalized so that

R
dz0ngal(z0) = 1. We choose

the form:

ngal(z) =
4p
⇡

z2

z3
0

exp
h
� (z/z0)

2
i
, (11)

with z0 chosen to be 0.92. The function ngal tells us
that most galaxies are observed around z ⇠ z0, i.e. far
enough to cover a significant volume, yet close enough to
be visible with the telescope. ⇠(zs, z) is a suitably chosen
window function for the source redshift bin zs. We pick
a Gaussian window:

⇠(zs, z) =
1p
2⇡�

exp

"
�1

2

✓
z � zs

�z

◆2
#

, (12)

with �z chosen such that the full width at half maxi-
mum (FWHM) of the window function ⇠(zs, z) equals
the source bin size �zs: �z = �zs/

p
8 ln 2.

The observed power spectra Pij(`) contain both signal
and shot noise components:

Pij(`) = Cij(`) + �ij
�2

✏

ni
, (13)

where �✏ = 0.22 is the intrinsic ellipticity of galaxies, and
ni is the number of galaxies present in the redshift bin
i. The error in the shear power spectrum in a bin of size
�` consists of cosmic variance and shot noise:

�Cij(`) =

s
2

(2` + 1)fsky�`


Cij(`) +

�2
✏

ni

�
. (14)

We compute the shear power spectrum, assuming the
following cosmology: {⌦bh2 = 0.0222, ⌦ch

2 = 0.118, h =
0.674, 109As = 2.21, ns = 0.962}. Fig. 2 shows the auto
power spectra for redshifts z = 0.2, 0.6, 1.0, 1.4, and 1.8,
for the 3 feedback models shown in Fig. 1. Also shown
are the error bars expected for LSST, plotted for feed-
back model # 1. For the cosmic variance component, we

Distinguishing these models through weak lensing-
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FIG. 3: Expected statistical error in the measurement of
neutrino masses with the LSST considering source galaxies in
the redshift range 0 < z < 2, if multipoles up to `

max

can
be measured. The redshift range is divided into 1 bin (black,
solid), 3 bins (red, dashed), and 5 bins (blue dotted). There is
one power spectrum with 1 bin, six power spectra with 3 bins,
and fifteen power spectra with 5 bins. Note that the errors
are optimistic since we have not accounted for photometric
redshift errors, beam errors, etc.

choose fsky = 0.5, approximately equal to 20,000 square
degrees of sky coverage. For the shot noise term, we
choose n = 50 galaxies per square arcminute, with �✏ =
0.22 [16, 37]. It is clear that the observations can easily
distinguish between feedback models. Conversely, if the
true model is unknown, there will substantial errors in
the inferred cosmological parameters.

IV. RESULTS

Let us now estimate the errors in the neutrino mass
measurement using the Fisher matrix formalism. Let ~✓ =
{⌦bh2, ⌦ch

2, h, 109As, ns, m⌫} be the set of cosmological
parameters to be constrained. The Fisher matrix is then

F = C

�1
prior +

X

`

@P

@~✓
Cov

�1 @PT

@~✓
. (15)

Cprior is the covariance matrix obtained from
CMB+BAO data, and serves to place priors on all
cosmological parameters. P

T indicates the transpose
of P (see Eq. [13]), and Cov is the lensing covariance
matrix defined by
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In order to map the power spectrum indices (i, j, k, l)

on to covariance matrix indices (A, B), we use the
following rule: A(i, j) = 1, 2, 3, 4, · · · for (i, j) =
(1, 1), (2, 1), (2, 2), (3, 1) · · ·, and similarly for B(k, l).
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FIG. 4: Bias in the estimated neutrino mass from weak
lensing assuming LSST parameters. The bias, or systematic
error is due to ignoring baryonic feedback. The four panels
show the bias �m⌫ for assumed neutrino masses m⌫ = 0.3,
0.2, 0.1, 0.05 eV. The 3 curves are plotted for feedback models
#1, #2, and #3. Note that the Fisher matrix formalism is
not reliable when |�m⌫ | > m⌫ .

Thus, when the data consists of only 1 redshift bin, the
covariance matrix is 1⇥1. With 2 bins, one can construct
2 auto-power spectra, and 1 cross-power spectrum. The
covariance matrix is then 3 ⇥ 3. With 5 bins, one can
construct 15 power spectra, and Cov is a 15⇥15 matrix.

Using the Fisher matrix formalism, one may obtain
an estimate of the statistical error on each cosmological
parameter ✓i: �(✓i) =

p
[F�1]ii, where F

�1 is the in-
verse of the Fisher matrix. Fig. 3 shows the estimated
statistical error on the neutrino mass m⌫ , if multipoles
up to `max can be measured. We consider here, source
galaxies in the redshift range 0 < z < 2 and divide this
range into n bins. Shown are results for n = 1, 3, and
5. It is clear that the large number of cross power spec-
tra for n = 3 and 5 substantially improve the sensitivity
of the experiment. We however, caution the reader that
our errors are likely to be underestimated since we have
ignored errors in the calculation of the point spread func-
tion (PSF) of the telescope beam, errors in photometric
redshift estimation, etc.

Let us now consider the bias introduced in our mea-
surement of parameter ✓i when baryonic feedback is ig-
nored. Let �C` be the di↵erence between the true lensing
power spectrum (which accounts for the correct feedback
model) and the assumed faulty lensing power spectrum
for a clustering model that accounts only for baryons and
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and fifteen power spectra with 5 bins. Note that the errors
are optimistic since we have not accounted for photometric
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choose fsky = 0.5, approximately equal to 20,000 square
degrees of sky coverage. For the shot noise term, we
choose n = 50 galaxies per square arcminute, with �✏ =
0.22 [16, 37]. It is clear that the observations can easily
distinguish between feedback models. Conversely, if the
true model is unknown, there will substantial errors in
the inferred cosmological parameters.
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Thus, when the data consists of only 1 redshift bin, the
covariance matrix is 1⇥1. With 2 bins, one can construct
2 auto-power spectra, and 1 cross-power spectrum. The
covariance matrix is then 3 ⇥ 3. With 5 bins, one can
construct 15 power spectra, and Cov is a 15⇥15 matrix.

Using the Fisher matrix formalism, one may obtain
an estimate of the statistical error on each cosmological
parameter ✓i: �(✓i) =
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[F�1]ii, where F

�1 is the in-
verse of the Fisher matrix. Fig. 3 shows the estimated
statistical error on the neutrino mass m⌫ , if multipoles
up to `max can be measured. We consider here, source
galaxies in the redshift range 0 < z < 2 and divide this
range into n bins. Shown are results for n = 1, 3, and
5. It is clear that the large number of cross power spec-
tra for n = 3 and 5 substantially improve the sensitivity
of the experiment. We however, caution the reader that
our errors are likely to be underestimated since we have
ignored errors in the calculation of the point spread func-
tion (PSF) of the telescope beam, errors in photometric
redshift estimation, etc.

Let us now consider the bias introduced in our mea-
surement of parameter ✓i when baryonic feedback is ig-
nored. Let �C` be the di↵erence between the true lensing
power spectrum (which accounts for the correct feedback
model) and the assumed faulty lensing power spectrum
for a clustering model that accounts only for baryons and
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and fifteen power spectra with 5 bins. Note that the errors
are optimistic since we have not accounted for photometric
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choose fsky = 0.5, approximately equal to 20,000 square
degrees of sky coverage. For the shot noise term, we
choose n = 50 galaxies per square arcminute, with �✏ =
0.22 [16, 37]. It is clear that the observations can easily
distinguish between feedback models. Conversely, if the
true model is unknown, there will substantial errors in
the inferred cosmological parameters.
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Let us now estimate the errors in the neutrino mass
measurement using the Fisher matrix formalism. Let ~✓ =
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Thus, when the data consists of only 1 redshift bin, the
covariance matrix is 1⇥1. With 2 bins, one can construct
2 auto-power spectra, and 1 cross-power spectrum. The
covariance matrix is then 3 ⇥ 3. With 5 bins, one can
construct 15 power spectra, and Cov is a 15⇥15 matrix.

Using the Fisher matrix formalism, one may obtain
an estimate of the statistical error on each cosmological
parameter ✓i: �(✓i) =
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[F�1]ii, where F

�1 is the in-
verse of the Fisher matrix. Fig. 3 shows the estimated
statistical error on the neutrino mass m⌫ , if multipoles
up to `max can be measured. We consider here, source
galaxies in the redshift range 0 < z < 2 and divide this
range into n bins. Shown are results for n = 1, 3, and
5. It is clear that the large number of cross power spec-
tra for n = 3 and 5 substantially improve the sensitivity
of the experiment. We however, caution the reader that
our errors are likely to be underestimated since we have
ignored errors in the calculation of the point spread func-
tion (PSF) of the telescope beam, errors in photometric
redshift estimation, etc.

Let us now consider the bias introduced in our mea-
surement of parameter ✓i when baryonic feedback is ig-
nored. Let �C` be the di↵erence between the true lensing
power spectrum (which accounts for the correct feedback
model) and the assumed faulty lensing power spectrum
for a clustering model that accounts only for baryons and

5

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

500 750 1000 1500 2000 3000

S
ta

t.
er

ro
r

in
m

⌫
(e

V
)

`max

1 bin
3 bins
5 bins

1

FIG. 3: Expected statistical error in the measurement of
neutrino masses with the LSST considering source galaxies in
the redshift range 0 < z < 2, if multipoles up to `

max

can
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and fifteen power spectra with 5 bins. Note that the errors
are optimistic since we have not accounted for photometric
redshift errors, beam errors, etc.

choose fsky = 0.5, approximately equal to 20,000 square
degrees of sky coverage. For the shot noise term, we
choose n = 50 galaxies per square arcminute, with �✏ =
0.22 [16, 37]. It is clear that the observations can easily
distinguish between feedback models. Conversely, if the
true model is unknown, there will substantial errors in
the inferred cosmological parameters.

IV. RESULTS

Let us now estimate the errors in the neutrino mass
measurement using the Fisher matrix formalism. Let ~✓ =
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(1, 1), (2, 1), (2, 2), (3, 1) · · ·, and similarly for B(k, l).

-5

0

5

10

�
m

⌫
/
m

⌫

-5

0

5

10

500 1000 2000 3000 4000

�
m

⌫
/
m

⌫

`max

1000 2000 3000 4000

`max

(a) m� = 0.30 eV

(b) m� = 0.20 eV

(c) m� = 0.10 eV (d) m� = 0.05 eV

Feedback model#1

Feedback model#2

Feedback model#3

1

FIG. 4: Bias in the estimated neutrino mass from weak
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not reliable when |�m⌫ | > m⌫ .

Thus, when the data consists of only 1 redshift bin, the
covariance matrix is 1⇥1. With 2 bins, one can construct
2 auto-power spectra, and 1 cross-power spectrum. The
covariance matrix is then 3 ⇥ 3. With 5 bins, one can
construct 15 power spectra, and Cov is a 15⇥15 matrix.

Using the Fisher matrix formalism, one may obtain
an estimate of the statistical error on each cosmological
parameter ✓i: �(✓i) =

p
[F�1]ii, where F

�1 is the in-
verse of the Fisher matrix. Fig. 3 shows the estimated
statistical error on the neutrino mass m⌫ , if multipoles
up to `max can be measured. We consider here, source
galaxies in the redshift range 0 < z < 2 and divide this
range into n bins. Shown are results for n = 1, 3, and
5. It is clear that the large number of cross power spec-
tra for n = 3 and 5 substantially improve the sensitivity
of the experiment. We however, caution the reader that
our errors are likely to be underestimated since we have
ignored errors in the calculation of the point spread func-
tion (PSF) of the telescope beam, errors in photometric
redshift estimation, etc.

Let us now consider the bias introduced in our mea-
surement of parameter ✓i when baryonic feedback is ig-
nored. Let �C` be the di↵erence between the true lensing
power spectrum (which accounts for the correct feedback
model) and the assumed faulty lensing power spectrum
for a clustering model that accounts only for baryons and
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are optimistic since we have not accounted for photometric
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choose fsky = 0.5, approximately equal to 20,000 square
degrees of sky coverage. For the shot noise term, we
choose n = 50 galaxies per square arcminute, with �✏ =
0.22 [16, 37]. It is clear that the observations can easily
distinguish between feedback models. Conversely, if the
true model is unknown, there will substantial errors in
the inferred cosmological parameters.

IV. RESULTS

Let us now estimate the errors in the neutrino mass
measurement using the Fisher matrix formalism. Let ~✓ =
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FIG. 4: Bias in the estimated neutrino mass from weak
lensing assuming LSST parameters. The bias, or systematic
error is due to ignoring baryonic feedback. The four panels
show the bias �m⌫ for assumed neutrino masses m⌫ = 0.3,
0.2, 0.1, 0.05 eV. The 3 curves are plotted for feedback models
#1, #2, and #3. Note that the Fisher matrix formalism is
not reliable when |�m⌫ | > m⌫ .

Thus, when the data consists of only 1 redshift bin, the
covariance matrix is 1⇥1. With 2 bins, one can construct
2 auto-power spectra, and 1 cross-power spectrum. The
covariance matrix is then 3 ⇥ 3. With 5 bins, one can
construct 15 power spectra, and Cov is a 15⇥15 matrix.

Using the Fisher matrix formalism, one may obtain
an estimate of the statistical error on each cosmological
parameter ✓i: �(✓i) =

p
[F�1]ii, where F

�1 is the in-
verse of the Fisher matrix. Fig. 3 shows the estimated
statistical error on the neutrino mass m⌫ , if multipoles
up to `max can be measured. We consider here, source
galaxies in the redshift range 0 < z < 2 and divide this
range into n bins. Shown are results for n = 1, 3, and
5. It is clear that the large number of cross power spec-
tra for n = 3 and 5 substantially improve the sensitivity
of the experiment. We however, caution the reader that
our errors are likely to be underestimated since we have
ignored errors in the calculation of the point spread func-
tion (PSF) of the telescope beam, errors in photometric
redshift estimation, etc.

Let us now consider the bias introduced in our mea-
surement of parameter ✓i when baryonic feedback is ig-
nored. Let �C` be the di↵erence between the true lensing
power spectrum (which accounts for the correct feedback
model) and the assumed faulty lensing power spectrum
for a clustering model that accounts only for baryons and
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cold dark matter but ignores baryonic small scale physics
such as AGN, star formation, and cooling. The estimated
cosmological parameters will all be o↵set from the true
values by an amount �~✓ given by:

�~✓ = F

�1
X

`

@C`

@✓
Cov

�1 �C` (17)

Fig. 4 shows the bias or systematic error in the estimated
neutrino mass when baryonic e↵ects are ignored. The
four panels show the bias as a fraction of the true neutrino
mass for m⌫ = 0.3, 0.2, 0.1, and 0.05 eV. The black (solid)
curve is plotted when the true feedback model is that of
#1. The red (dashed) and blue (dotted) are drawn for
feedback models #2 and #3 respectively. The bias in
the neutrino mass can be either positive or negative de-
pending on the scale at which the baryon bias reaches
its lowest value. Thus with feedback models #1 and #2,
we overestimate the neutrino mass, but with feedback
model #3, we underestimate it. The bias is substantial:
with error bars representative of LSST, we obtain bias
values |�m⌫ | � m⌫ . Unfortunately, the Fisher matrix
formalism is not applicable in this regime since the Fisher
matrix is obtained through Taylor series expansion of the
logarithm of the likelihood function about its maximum
value. We can nevertheless infer that the bias is signif-
icant and a careful understanding of baryonic physics is
essential if cosmological experiments are to obtain the
correct neutrino mass.

Ignoring baryonic processes also introduces a bias in
the other cosmological parameters, as we see from Eq.

[17]. However, these biases are expected to be small
since they are well constrained by observations of the
CMB (note that current constraints on the neutrino mass
from CMB+BAO are not very strong). Fig. 5 shows
the biases in all the cosmological parameters ✓i that we
consider, namely ⌦bh2, ⌦ch

2, H0, As, ns, along with m⌫ .
The biases are shown as a fraction of the mean value (✓̄i)
obtained from CMB+BAO observations. When the ob-
served data (which includes e↵ects of small scale physics)
is fit to a theory model that ignores these feedback pro-
cesses, the di↵erent parameters change in a non-trivial
manner, in order to compensate for the e↵ect of feedback.
The feedback model considered in Fig. 5 is model #2 (see
also Fig. 1). Since we employ a logarithmic scale, neg-
ative biases are represented by red (dotted) lines, while
positive biases are shown using black (solid) lines. In
order to compensate for the damping on small scales,
the neutrino mass is overestimated, resulting in a posi-
tive bias. The value of ⌦bh2 is also overestimated since
baryons (even without feedback) being collisional, result
in a damping of the matter power spectrum. The cold
dark matter fraction receives a negative bias which serves
to mimic the damping due to feedback. The scalar spec-
tral index ns also receives a negative bias since the power
spectrum / kns and decreasing ns preferentially lowers
power on small scales, thereby behaving in a similar man-
ner to baryonic feedback. The hubble parameter shows
a positive bias, although this is a small e↵ect (when the
matter power spectrum is expressed in units of (Mpc/h)3,
it precisely cancels the h3 multiplying the integral in Eq.
[6]). The positive bias seen in As is harder to explain.
As is the only parameter that has no scale dependence.
If As were the only free parameter, one would expect a
negative bias to compensate for the lack of power caused
by feedback. However, when many parameters are al-
lowed to vary, this task can be accomplished better by,
e.g. increasing the neutrino mass which causes a scale de-
pendent damping, although neutrino masses a↵ect large
scales also. One would then need to increase power on
large scales since baryonic feedback does not damp the
largest scales. As can provide such a counterbalance.
The As parameter is however, prone to systematic errors
due to other processes, such as dark matter annihilation
at early times [38, 39].

It is interesting to ask whether other cosmological
probes can constrain neutrino masses as well. There exist
several probes of neutrino masses such as the Lyman-↵
forest, galaxy clustering, cluster abundances, etc. A par-
ticularly promising probe is the cosmic microwave back-
ground which is being measured by current ground based
experiments to very high precision on small scales. CMB
Polarization experiments also help understand lensing of
the CMB. The South Pole Telescope with Polarization
(SPTPol) has obtained the first detection of the polariza-
tion B-mode on small scales through gravitational lens-
ing of the E-mode [40], which may be used to reconstruct
the lensing potential. Future CMB experiments will be
able to obtain robust constraints on neutrino masses from

But Fisher matrix analysis also gives us systematic errors:
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FIG. 3: Expected statistical error in the measurement of
neutrino masses with the LSST considering source galaxies in
the redshift range 0 < z < 2, if multipoles up to `

max

can
be measured. The redshift range is divided into 1 bin (black,
solid), 3 bins (red, dashed), and 5 bins (blue dotted). There is
one power spectrum with 1 bin, six power spectra with 3 bins,
and fifteen power spectra with 5 bins. Note that the errors
are optimistic since we have not accounted for photometric
redshift errors, beam errors, etc.

choose fsky = 0.5, approximately equal to 20,000 square
degrees of sky coverage. For the shot noise term, we
choose n = 50 galaxies per square arcminute, with �✏ =
0.22 [16, 37]. It is clear that the observations can easily
distinguish between feedback models. Conversely, if the
true model is unknown, there will substantial errors in
the inferred cosmological parameters.

IV. RESULTS

Let us now estimate the errors in the neutrino mass
measurement using the Fisher matrix formalism. Let ~✓ =
{⌦bh2, ⌦ch

2, h, 109As, ns, m⌫} be the set of cosmological
parameters to be constrained. The Fisher matrix is then

F = C

�1
prior +

X

`

@P

@~✓
Cov

�1 @PT

@~✓
. (15)

Cprior is the covariance matrix obtained from
CMB+BAO data, and serves to place priors on all
cosmological parameters. P

T indicates the transpose
of P (see Eq. [13]), and Cov is the lensing covariance
matrix defined by

CovAB(Pij , Pkl) =
2

(2` + 1)fsky�`


PikPjl + PilPjk

2

�
.

(16)
In order to map the power spectrum indices (i, j, k, l)

on to covariance matrix indices (A, B), we use the
following rule: A(i, j) = 1, 2, 3, 4, · · · for (i, j) =
(1, 1), (2, 1), (2, 2), (3, 1) · · ·, and similarly for B(k, l).
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FIG. 4: Bias in the estimated neutrino mass from weak
lensing assuming LSST parameters. The bias, or systematic
error is due to ignoring baryonic feedback. The four panels
show the bias �m⌫ for assumed neutrino masses m⌫ = 0.3,
0.2, 0.1, 0.05 eV. The 3 curves are plotted for feedback models
#1, #2, and #3. Note that the Fisher matrix formalism is
not reliable when |�m⌫ | > m⌫ .

Thus, when the data consists of only 1 redshift bin, the
covariance matrix is 1⇥1. With 2 bins, one can construct
2 auto-power spectra, and 1 cross-power spectrum. The
covariance matrix is then 3 ⇥ 3. With 5 bins, one can
construct 15 power spectra, and Cov is a 15⇥15 matrix.

Using the Fisher matrix formalism, one may obtain
an estimate of the statistical error on each cosmological
parameter ✓i: �(✓i) =

p
[F�1]ii, where F

�1 is the in-
verse of the Fisher matrix. Fig. 3 shows the estimated
statistical error on the neutrino mass m⌫ , if multipoles
up to `max can be measured. We consider here, source
galaxies in the redshift range 0 < z < 2 and divide this
range into n bins. Shown are results for n = 1, 3, and
5. It is clear that the large number of cross power spec-
tra for n = 3 and 5 substantially improve the sensitivity
of the experiment. We however, caution the reader that
our errors are likely to be underestimated since we have
ignored errors in the calculation of the point spread func-
tion (PSF) of the telescope beam, errors in photometric
redshift estimation, etc.

Let us now consider the bias introduced in our mea-
surement of parameter ✓i when baryonic feedback is ig-
nored. Let �C` be the di↵erence between the true lensing
power spectrum (which accounts for the correct feedback
model) and the assumed faulty lensing power spectrum
for a clustering model that accounts only for baryons and
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FIG. 6: Expected errors in the neutrino mass from CMB
lensing, assuming f

sky

= 0.5 and cosmic variance error bars.
The magenta curve shows the statistical error in m⌫ , while
the black (solid), red (dashed), and blue (dotted) curves show
the systematic error due to feedback models #1, #2, and #3.
The true neutrino mass was set to 0.1 eV. For all models, the
systematic error is smaller than the statistical error.

lensing. Authors [41] estimate that a future Stage-IV
CMB experiment together with current large scale struc-
ture surveys will be able to measure neutrino masses to
an accuracy of �(m⌫) < 0.045 eV, a bound which may
be reduced further by including future galaxy surveys.

Fig. 6 shows the errors that may be expected from a
cosmic variance limited CMB lensing experiment assum-
ing a sky fraction fsky = 0.5, and a neutrino mass m⌫

= 0.1 eV. The magenta curve shows a statistical error
⇡ 0.06 eV if multipoles up to `max = 2000 can be mea-
sured. The black (solid), red (dashed), and blue (dotted)
curves show the systematic errors in the measurement of
neutrino masses due to ignoring baryonic feedback, con-
sidering feedback models #1, #2, and #3 respectively.
Even in the case of AGN feedback (model #1), the ef-
fects are small. This is because CMB lensing is more
sensitive to structure at higher redshifts (z >⇠ 2) and on
larger scales compared to galactic weak lensing. In all
cases, the e↵ect of feedback processes on CMB lensing
is smaller than the statistical error. Nevertheless experi-
ments that hope to measure the sum of neutrino masses
to accuracies �(m⌫) < 0.02 eV will need to include the
e↵ect of feedback. The lack of sensitivity of CMB lensing
to small scale baryonic physics makes it a valuable probe
to be used in conjunction with galactic lensing surveys.

V. CONCLUSIONS

In this article, we discussed how future weak lensing
surveys such as the LSST can measure neutrino masses
through weak gravitational lensing of large scale struc-
ture. We showed that weak lensing is sensitive to the
small scale non-linear matter power spectrum and is a
powerful tool to probe neutrino masses. We then inves-
tigated the e↵ect of including various baryonic feedback
processes on the shear power spectrum. It was found
that there is indeed a large e↵ect.

We studied 3 feedback models using results from
the publicly available Overwhelmingly Large Simulations
(OWLS) project. Feedback model #1 included AGN
feedback from gas accretion on to black holes, with 15%
of the radiated energy coupling to the gas. Feedback
model #2 considered a top heavy stellar IMF which
yields more supernova energy compared to the Chabrier
IMF. Feedback model #3 ignored supernova feedback as
well as cooling by heavy elements.

In the case of feedback model #3, the dominant e↵ect
is a boost in the power spectrum on small scales, due
to contraction of halos in response to baryonic conden-
sation. With feedback models #1 and #2, we observed
a damping of the power spectrum on small and inter-
mediate scales due to thermal gas pressure, while the
power spectrum is boosted on very small scales. Feed-
back model #1 in particular shows a substantial damping
of the power spectrum (nearly a 30% e↵ect), and is much
larger than the e↵ect seen by other authors such as [20].
It is of course important to question whether such large
AGN feedback results in realistic models of large scale
structure. Authors [42] studied this issue in detail and
found that only simulations that include AGN feedback
yielded stellar mass fractions, star formation rates, and
stellar age distributions in good agreement with current
estimates.

We then discussed the formalism of weak lensing and
obtained error bars characteristic of the LSST experi-
ment. In the absence of systematic errors due to small
scale physics, photometric errors, beam errors, etc, weak
lensing in combination with current CMB+BAO data is
a powerful probe of neutrino masses, achieving sensitiv-
ities �(m⌫) ⇡ 0.01 eV, when Ne↵ is held constant at its
standard model value, i.e. 3.046. Such high precision
observations can measure neutrino masses at high signif-
icance even in the case of the minimal normal hierarchy.
Due to this high sensitivity, the weak lensing results are
easily a↵ected by systematic errors. In all three feed-
back models, the bias introduced in the neutrino mass
measurement exceeds the neutrino mass itself, particu-
larly in the case of AGN feedback. Feedback models #1
and #2 result in a positive bias, i.e. an overestimate
of the neutrino mass, while feedback model #3 results
in a negative bias, i.e. it underestimates the neutrino
mass. Thus it is crucial to account for the possibility of
feedback while analyzing data from future weak lensing
surveys such as LSST.



Conclusions - 


!
1.  Weak Lensing is a very good probe of neutrino masses.


 However, it is extremely sensitive to baryonic effects!


!
!
2.  The bias introduced in the neutrino mass is of order (or 
greater than) the neutrino mass itself. The mass inferred 
from weak lensing can be larger or smaller than the true 
mass.


 


3.  CMB lensing is less sensitive to neutrino masses,


    but also less sensitive to baryonic effects.


!
!


