Electroweak-scale Right-handed Neutrino Model,
126 GeV Higgs boson and BSM Scalars

Ajinkya Shrish Kamat
University of Virginia
ajinkya@virginia.edu
http://people.virginia.edu/~ask4db/

Collaborators Prof. P. Q. Hung and Vinh Hoang
(Nucl. Phys. B, 877 190, and paper in preparation)

Pheno 2014

5th May, 2014
Outline

- Motivation

Motivation

Overview of the Electroweak-scale Right-handed Neutrino (EWν_R) model

Accommodating the 126 GeV Higgs boson

BSM scalars in EWν_R model
Outline

- Motivation
- Overview of the Electroweak-scale Right-handed Neutrino (EWν_R) model
Outline

- Motivation
- Overview of the Electroweak-scale Right-handed Neutrino (EWν_R) model
- Accommodating the 126 GeV Higgs boson
Outline

- Motivation
- Overview of the Electroweak-scale Right-handed Neutrino (EWν_R) model
- Accommodating the 126 GeV Higgs boson
- BSM scalars in EWν_R model
Motivation

Two of the most pressing problems in particle physics

- Nature of spontaneous breaking of the electroweak symmetry
- Nature of neutrino masses and mixings
Motivation

- Two of the most pressing problems in particle physics
 - Nature of spontaneous breaking of the electroweak symmetry
 - Nature of neutrino masses and mixings
- Discovery of a new 126 GeV Higgs is significant step in unfolding the first mystery
Motivation

- Neutrino (ν) masses \rightarrow popular "Seesaw mechanism"
Motivation

- Neutrino (ν) masses → popular "Seesaw mechanism"
 - In general Seesaw Mechanism:
 - $\nu_R \to SU(2)_L \times U(1)_Y$ singlet
 - Right-handed neutrino mass at GUT scale → NOT directly testable at LHC

$$m_\nu \sim \frac{(m_{\nu}^D)^2}{M_R} \leq 1\text{eV}$$

Dirac mass

Majorana mass
Motivation

- Neutrino (ν) masses \rightarrow popular "Seesaw mechanism"
 - In general Seesaw Mechanism:
 - $\nu_R \rightarrow SU(2)_L \times U(1)_Y$ singlet
 - Right-handed neutrino mass at GUT scale \rightarrow NOT directly testable at LHC

$$m_\nu \sim \frac{(m_\nu^D)^2}{M_R} \leq 1\text{eV}$$

- So
 - What if $M_R \sim \Lambda_{EW}$?
Neutrino (ν) masses \rightarrow popular "Seesaw mechanism"

In general Seesaw Mechanism:
- $\nu_R \rightarrow SU(2)_L \times U(1)_Y$ singlet
- Right-handed neutrino mass at GUT scale \rightarrow NOT directly testable at LHC

$$m_\nu \sim \frac{(m_D^\nu)^2}{M_R} \leq 1 \text{eV}$$

So

- What if $M_R \sim \Lambda_{EW}$?
- Within SM group $SU(3)_c \times SU(2)_L \times U(1)_Y$?
Motivation

- Neutrino (ν) masses \rightarrow popular “Seesaw mechanism”
 - In general Seesaw Mechanism:
 - $\nu_R \rightarrow SU(2)_L \times U(1)_Y$ singlet
 - Right-handed neutrino mass at GUT scale \rightarrow NOT directly testable at LHC

$$m_\nu \sim \frac{(m^D_\nu)^2}{M_R} \leq 1\text{eV}$$

- So
 - What if $M_R \sim \Lambda_{EW}$?
 - Within SM group $SU(3)_c \times SU(2)_L \times U(1)_Y$?

possible with $EW\nu_R$ model

[P. Q. Hung, PLB 649 (2007)]
Motivation
EWν_R Model
126 GeV Candidate
BSM scalars in EWν_R model

What’s next option after a singlet ν_R?

\[I_L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}, \ e_R \]
What’s next option after a singlet ν_R?

\[
I_L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}, \quad e_R \\
I_R^M = \begin{pmatrix} \nu_R \\ e^M_R \end{pmatrix}, \quad e^M_L
\]
To ensure anomaly cancellation

\[q_L = \begin{pmatrix} u_L \\ d_L \end{pmatrix}, u_R, d_R \]
To ensure anomaly cancellation

\[q_L = \begin{pmatrix} u_L \\ d_L \end{pmatrix}, u_R, d_R \quad q_R^M = \begin{pmatrix} u_R^M \\ d_R^M \end{pmatrix}, u_L^M, d_L^M \]
Motivation
EWν\(_R\) Model
126 GeV Candidate
BSM scalars in EWν\(_R\) model

\[l_L = \left(\begin{array}{c} \nu_L \\ e_L \end{array} \right), \quad e_R \quad l_R^M = \left(\begin{array}{c} \nu_R^M \\ e_R^M \end{array} \right), \quad e_L^M \]
\[I_L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}, \ e_R \quad I_R^M = \begin{pmatrix} \nu_R \\ e_R^M \end{pmatrix}, \ e_L^M \]

Majorana

\[\mathcal{L}_M = g_M (I^M_R, \sigma_2) (I^M_R) + h.c. \]
\[l_L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}, \quad l_R^M = \begin{pmatrix} \nu_R \\ e_R^M \end{pmatrix}, \quad e_L^M \]

Majorana

\[\mathcal{L}_M = g_M (l_R^M, T \sigma_2) (i \tau_2 \tilde{\chi}) l_R^M + h.c. \]

\[\tilde{\chi} \left(3, \frac{Y}{2} = 1 \right) \]
\[I_L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}, \quad I_R^M = \begin{pmatrix} \nu_R \\ e_R^M \end{pmatrix}, \quad e_L^M \]

Majorana

\[\mathcal{L}_M = g_M (I_R^M)^T \sigma_2 (i \tau_2 \tilde{\chi}) I_R^M + \text{h.c.} \]

\[\tilde{\chi} \ (3, \ \frac{Y}{2} = 1) \]

\[M_R = g_M v_M; \quad \langle \chi^0 \rangle = v_M \sim \Lambda_{EW} \]

\[\tilde{\chi} = \begin{pmatrix} \frac{1}{\sqrt{2}} \chi^+ & \chi^{++} \\ \chi^0 & -\frac{1}{\sqrt{2}} \chi^+ \end{pmatrix} \]
$I_L = \left(\nu_L, e_L \right), e_R \quad I_R^M = \left(\nu_R^M, e_R^M \right), e_L^M$

Majorana

$$\mathcal{L}_M = g_M \left(I_R^M, T \sigma_2 \right) \left(i \tau_2 \tilde{\chi} \right) I_R^M + h.c.$$

$$\tilde{\chi} (3, \frac{Y}{2} = 1)$$

$$M_R = g_M v_M; \quad < \chi^0 > = v_M \sim \Lambda_{EW}$$

$$\tilde{\chi} = \begin{pmatrix}
\frac{1}{\sqrt{2}} \chi^+ & \chi^{++} \\
\chi^0 & -\frac{1}{\sqrt{2}} \chi^+
\end{pmatrix}$$

Z width $\Rightarrow M_R > M_Z / 2$
\[l_L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}, \ e_R \quad l_R^M = \begin{pmatrix} \nu_R \\ e_R^M \end{pmatrix}, \ e_L^M \]
\[I_L = \left(\begin{array}{c} \nu_L \\ e_L \end{array} \right), e_R \quad I^M_R = \left(\begin{array}{c} \nu_R \\ e^M_R \end{array} \right), e_L^M \]

Dirac

\[\mathcal{L}_S = g_{s} \bar{I}_L \phi_S I^M_R + h.c. \]
\[I_L = \left(\begin{array}{c} \nu_L \\ e_L \end{array} \right), \quad I_R^M = \left(\begin{array}{c} \nu_R \\ e_R^M \end{array} \right), \quad I_R^M = \left(\begin{array}{c} \nu_R \\ e_R^M \end{array} \right), \quad e_L^M \]

Dirac

\[\mathcal{L}_S = g_{sl} \bar{l}_L \phi_S l_R^M + h.c. \]

\[\phi_S (1, \frac{Y}{2} = 0) \]

\[m^D_\nu = g_{sl} \nu_S \quad \text{where} \quad < \phi_S > = \nu_S \]

\[m_\nu \leq 1\text{eV} \quad \Rightarrow \quad \nu_S \sim 10^{5-6}\text{eV} \quad \text{with} \quad g_{sl} \sim \mathcal{O}(1) \]

or \[\nu_S \sim \Lambda_{EW} \quad \text{with} \quad g_{sl} \sim \mathcal{O}(10^{-6}) \]
\[\rho = \frac{M_W^2}{M_Z^2 \cos \theta_W^2} = 1 \quad \Rightarrow \]

Tree level
$\rho = \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} = 1 \Rightarrow \text{add } \xi (3, \frac{Y}{2} = 0); \langle \xi^0 \rangle = v_M$

Tree level
\[\langle \phi^0 \rangle \equiv \frac{v_2}{\sqrt{2}} , \quad \langle \chi^0 \rangle \equiv v_M , \quad \langle \xi^0 \rangle \equiv v_M \]

\[v = \sqrt{v_2^2 + 8v_M^2} \approx 246 \text{GeV} \]

\[SU(2)_L \times SU(2)_R \]
\[<\phi^0> \equiv \frac{v_2}{\sqrt{2}}, \quad <\chi^0> \equiv v_M, \quad <\xi^0> \equiv v_M \]

\[v = \sqrt{v_2^2 + 8v_M^2} \approx 246 \text{GeV} \]

\[SU(2)_D \]
\[< \phi^0 > \equiv \frac{v_2}{\sqrt{2}}, \quad < \chi^0 > \equiv v_M, \quad < \xi^0 > \equiv v_M \]

\[v = \sqrt{v_2^2 + 8v_M^2} \approx 246 \text{GeV} \]

\[SU(2)_D \]
Motivation
EW\nu_R Model
126 GeV Candidate
BSM scalars in EW\nu_R model

\langle \phi^0 \rangle \equiv \frac{v_2}{\sqrt{2}}, \quad \langle \chi^0 \rangle \equiv v_M, \quad \langle \xi^0 \rangle \equiv v_M

v = \sqrt{v_2^2 + 8v_M^2} \approx 246\text{GeV}

SU(2)_D

\begin{align*}
\text{Higgs bosons:} & \quad H^{\pm}_{5}, H^{0}_{5}, H^{\pm}_{3}, H^{0}_{3} \\
\text{masses (GeV):} & \quad ? GeV/c^2, \quad ? GeV/c^2, \quad ? GeV/c^2, \quad ? GeV/c^2
\end{align*}
\[<\phi^0> \equiv \frac{\nu_2}{\sqrt{2}}, \quad <\chi^0> \equiv \nu_M, \quad <\xi^0> \equiv \nu_M\]
\[\nu = \sqrt{\nu_2^2 + 8\nu_M^2} \approx 246\text{GeV}\]

\[SU(2)_D\]
$\langle \phi^0 \rangle \equiv \frac{v_2}{\sqrt{2}}, \quad \langle \chi^0 \rangle \equiv v_M, \quad \langle \xi^0 \rangle \equiv v_M$

$v = \sqrt{v_2^2 + 8v_M^2} \approx 246\text{GeV}$

$SU(2)_D$
Motivation

$\langle \phi^0 \rangle \equiv \frac{\nu_2}{\sqrt{2}}$, \hspace{1cm} $\langle \chi^0 \rangle \equiv \nu_M$, \hspace{1cm} $\langle \xi^0 \rangle \equiv \nu_M$

$$\nu = \sqrt{\nu_2^2 + 8\nu_M^2} \approx 246\text{GeV}$$

$SU(2)_D$

with $H_5^{--} = (H_5^{++})^*$, $H_5^- = -(H_5^+)^*$, $H_3^- = -(H_3^+)^*$ and $H_3^0 = -(H_3^0)^*$
\[<\phi^0> \equiv \frac{v_2}{\sqrt{2}}, \quad <\chi^0> \equiv v_M, \quad <\xi^0> \equiv v_M \]
\[v = \sqrt{v_2^2 + 8v_M^2} \approx 246 \text{GeV} \]

\[SU(2)_D \]

doublet \(\phi \) & triplet \(\chi; 0^- \)

with \(H_5^{--} = (H_5^{++})^*, \ H_5^- = -(H_5^+)^*, \ H_3^- = -(H_3^+)^* \) and \(H_3^0 = -(H_3^0)^* \)
Motivation

EWν_R Model

126 GeV Candidate

BSM scalars in EWν_R model

EWν_R Model Particle Content

Three generations of Standard Model fermions

<table>
<thead>
<tr>
<th>Quarks</th>
<th>Gauge bosons</th>
</tr>
</thead>
<tbody>
<tr>
<td>u up</td>
<td>Y photon</td>
</tr>
<tr>
<td>c charm</td>
<td></td>
</tr>
<tr>
<td>t top</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BSM scalars</th>
<th>Mirror quarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higgs boson</td>
<td></td>
</tr>
</tbody>
</table>

Left-handed fermion doublets

<table>
<thead>
<tr>
<th>Leptons</th>
<th>126 GeV scalars</th>
</tr>
</thead>
<tbody>
<tr>
<td>e electron</td>
<td></td>
</tr>
<tr>
<td>μ muon</td>
<td></td>
</tr>
<tr>
<td>τ tau</td>
<td></td>
</tr>
</tbody>
</table>

Right-handed mirror fermion doublets

<table>
<thead>
<tr>
<th>Leptons</th>
<th>126 GeV scalars</th>
</tr>
</thead>
<tbody>
<tr>
<td>e electron</td>
<td></td>
</tr>
<tr>
<td>μ muon</td>
<td></td>
</tr>
<tr>
<td>τ tau</td>
<td></td>
</tr>
</tbody>
</table>
Does the EWν_R model agree with the experimental constraints on
the EW precision parameters- S, T?
Agreement with Precision Measurements

New Physics contributions, \tilde{S} and \tilde{T}, due to EWν_R model are seen to, indeed, satisfy the constraints from precision measurements

How EWν_R model accommodates
Standard Model-like Higgs boson having
126 GeV mass
126 GeV candidate in minimal EW$_{\nu R}$

- Back of the envelope: if mirror quarks contribute as much as top quark

$$\sigma(gg \to H_1^0) \sim 49 \times \frac{v^2}{v_2^2} \sigma_{SM}(gg \to H) \qquad !!$$

Cannot be compensated for in all the branching ratios
126 GeV candidate in minimal EWν_R

- **Back of the envelope:** if mirror quarks contribute as much as top quark

$$\sigma(gg \rightarrow H^0_1) \sim 49 \times \frac{v^2}{v_2^2} \sigma_{SM}(gg \rightarrow H)$$

Cannot be compensated for in all the branching ratios.

- H^0_1 in EWν_R model cannot be the new 126 GeV particle.
126 GeV candidate in minimal EWν_R

- **Back of the envelope:** if mirror quarks contribute as much as top quark

\[\sigma(gg \rightarrow H_1^0) \sim 49 \times \frac{v^2}{v'^2} \sigma_{SM}(gg \rightarrow H) \]

Cannot be compensated for in all the branching ratios

- H_1^0 in EWν_R model cannot be the new 126 GeV particle

- **Back of the envelope:** if mirror quarks contribute as much as the top quark

\[\sigma(gg \rightarrow H_3^0) \sim \frac{v'^2}{v^2} \sigma_{SM}(gg \rightarrow H) \]

!!
126 GeV candidate in minimal EWνR

- Back of the envelope: if mirror quarks contribute as much as top quark

\[\sigma(gg \rightarrow H^0_1) \sim 49 \times \frac{v^2}{v^2_2} \sigma_{SM}(gg \rightarrow H) \]

Cannot be compensated for in all the branching ratios

- \(H^0_1 \) in EWνR model cannot be the new 126 GeV particle

- Back of the envelope: if mirror quarks contribute as much as the top quark

\[\sigma(gg \rightarrow H^0_3) \sim \frac{v^2_M}{v^2_2} \sigma_{SM}(gg \rightarrow H) \]

Thus, for \(v^2_M/v^2_2 \sim 1 \), \(H^0_3 \) could reproduce \(\sigma_{SM}(gg \rightarrow H) \)
Spin-Parity Result from CMS

[CMS collaboration, CMS-PAS-HIG-13-002, March 2013]

Disfavored up to $> 3\sigma$ relative to 0^+
How $\text{EW}_\nu R$ accommodates 126 GeV particle as CP-even (0^+) Higgs
How \(EW\nu_R \) accommodates 126 GeV particle as CP-even \((0^+)\) Higgs

Not with the minimal \(EW\nu_R \) model just explained
An Extended EWν_R (V. Hoang, P.Q.Hung, A.S.Kamat: paper in preparation)
Add another $SU(2)$ scalar doublet Φ_{2M} ($Y/2 = 1$)
An Extended EW\(\nu_R\) (V. Hoang, P.Q.Hung, A.S.Kamat: paper in preparation)

- Add another \(SU(2)\) scalar doublet \(\Phi_2 M\) (\(Y/2 = 1\))
- \(\Phi_2 \rightarrow\) couples \textit{only} to SM fermions; gives masses to left-handed fermion doublets
An Extended EWν_R (V. Hoang, P.Q.Hung, A.S.Kamat: paper in preparation)

- Add another $SU(2)$ scalar doublet Φ_{2M} ($Y/2 = 1$)
- $\Phi_2 \rightarrow$ couples *only* to SM fermions; gives masses to left-handed fermion doublets
- $\Phi_{2M} \rightarrow$ couples *only* to mirror fermions; gives masses to right-handed fermion doublets
An Extended EWν_R (V. Hoang, P.Q.Hung, A.S.Kamat: paper in preparation)

- Add another $SU(2)$ scalar doublet Φ_{2M} ($Y/2 = 1$)
- $\Phi_2 \rightarrow$ couples *only* to SM fermions; gives masses to left-handed fermion doublets
- $\Phi_{2M} \rightarrow$ couples *only* to mirror fermions; gives masses to right-handed fermion doublets
- Physical scalar states of $SU(2)_D$ custodial symmetry:
An Extended EW\textsubscript{ν_R} (V. Hoang, P.Q.Hung, A.S.Kamat: paper in preparation)

- Add another $SU(2)$ scalar doublet Φ_{2M} ($Y/2 = 1$)
- $\Phi_2 \rightarrow$ couples \textit{only} to SM fermions; gives masses to left-handed fermion doublets
- $\Phi_{2M} \rightarrow$ couples \textit{only} to mirror fermions; gives masses to right-handed fermion doublets
- Physical scalar states of $SU(2)_D$ custodial symmetry:
An Extended EW\(\nu_R\) (V. Hoang, P.Q.Hung, A.S.Kamat: paper in preparation)

- Add another \(SU(2)\) scalar doublet \(\Phi_{2M}\) (\(Y/2 = 1\))
- \(\Phi_2 \rightarrow\) couples \textit{only} to SM fermions; gives masses to left-handed fermion doublets
- \(\Phi_{2M} \rightarrow\) couples \textit{only} to mirror fermions; gives masses to right-handed fermion doublets
- Physical scalar states of \(SU(2)_D\) custodial symmetry:
The custodial singlets mix to give mass eigenstates

\[
\begin{pmatrix}
\tilde{H}_1^0 \\
\tilde{H}_1^{0,M} \\
\tilde{H}_1^{0,\prime}
\end{pmatrix}
= \begin{pmatrix}
a_1,1 & a_1,1M & a_1,1' \\
a_1M,1 & a_1M,1M & a_1M,1' \\
a_1',1 & a_1',1M & a_1',1'
\end{pmatrix}
\begin{pmatrix}
H_1^0 \\
H_1^{0,M} \\
H_1^{0,\prime}
\end{pmatrix}
\]
In Minimal EWνR Model

In a Simplest Extension

Motivation

EWνR Model

126 GeV Candidate

BSM scalars in EWνR model

Higgs boson

- **H → bb**
 \[\mu = 1.0 \pm 0.5 \]

- **H → ττ**
 \[\mu = 0.78 \pm 0.27 \]

- **H → γγ**
 \[\mu = 0.77 \pm 0.27 \]

- **H → WW**
 \[\mu = 0.72^{+0.20}_{-0.18} \]

- **H → ZZ**
 \[\mu = 0.93^{+0.29}_{-0.25} \]

H~^0 decay limits

- \[\sim H_1^0 \rightarrow f \bar{f} \]
 \[CMS \text{ preliminary} \]
 \[m_{H_1} = 125.7 \text{ GeV} \]

- \[\sim H_1^0 \rightarrow WW / ZZ \]
 \[EWνR \text{ values} \]
 \[m_{H_1^0} = 125.7 \text{ GeV} \]

Motivation

EWν_R Model
126 GeV Candidate
BSM scalars in EWν_R model

In Minimal EWν_R Model
In a Simplest Extension

$\tilde{H}_1^0 \rightarrow \gamma \gamma$ not displayed, because its predicted value in EWν_R model spans a wide range...

$\tilde{H}_1^0 \rightarrow f \bar{f}$

$H \rightarrow \mu = 1.0 \pm 0.5$

$H \rightarrow \tau \tau$
$\mu = 0.78 \pm 0.27$

$H \rightarrow \gamma \gamma$
$\mu = 0.77 \pm 0.27$

$H \rightarrow WW$
$\mu = 0.72^{+0.20}_{-0.18}$

$H \rightarrow ZZ$
$\mu = 0.93^{+0.29}_{-0.25}$

Best fit σ / σ_{SM}

$\tilde{H}_1^0 \rightarrow WW / ZZ$
\[\mu(H_1^0 \rightarrow \gamma \gamma) = \frac{\sigma(gg \rightarrow \tilde{H}_1^0 \rightarrow \gamma \gamma)}{\sigma(gg \rightarrow H_{SM} \rightarrow \gamma \gamma)} \]

\[m_{H_1^0} = 400 \text{ GeV} \]

\[m_{H_1^0} (\text{GeV}) \]

\[m_{H_1^0} = 200 \]

\[m_{H_1^0} = 400 \]

\[m_{H_1^0} = 600 \]

\[\mu(H_1^0 \rightarrow \gamma \gamma) \] spans from \(\sim 0 \) to \(\sim 2.5 \) even in this ‘example’ plot
BSM scalars in EWν_R model - preliminary
Motivation

EW\nu_R Model

126 GeV Candidate

BSM scalars in EW\nu_R model

Data not yet sensitive to blue curves on or below the background bands

[SM Higgs search plot: with courtesy of CMS]
Motivation
EWν_R Model
126 GeV Candidate
BSM scalars in EWν_R model

\[
\mu(H_3^0 \rightarrow \gamma\gamma)
\]

Data not yet sensitive to mass range of H_3^0 (and hence H_{3M}^0) for which $\mu(H_3^0 \rightarrow \gamma\gamma) \lesssim 1$
Motivation
EW\(\nu_R\) Model
126 GeV Candidate
BSM scalars in EW\(\nu_R\) model

Summary

A model with Electroweak-scale Right-handed Neutrino (EW\(\nu_R\))
with Majorana mass

Does not violate constraints from EW precision measurements

Properties of 126 GeV candidate in a simply extended EW\(\nu_R\) model

agree with the data

More data at LHC will be sensitive to the BSM scalars
Summary

- A model with Electroweak-scale Right-handed Neutrino (EW_{ν_R}) with Majorana mass
Summary

- A model with Electroweak-scale Right-handed Neutrino ($\text{EW}\nu_R$) with Majorana mass
- Does not violate constraints from EW precision measurements
Summary

- A model with Electroweak-scale Right-handed Neutrino (EWν_R) with Majorana mass
- Does not violate constraints from EW precision measurements
- Properties of 126 GeV candidate in a simply extended EWν_R model agree with the data
Summary

- A model with Electroweak-scale Right-handed Neutrino (EWν_R) with Majorana mass
- Does not violate constraints from EW precision measurements
- Properties of 126 GeV candidate in a simply extended EWν_R model agree with the data
- More data at LHC will be sensitive to the BSM scalars
Notes

Motivation
EWνR Model
126 GeV Candidate
BSM scalars in EWνR model

Notes

- Makes Seesaw mechanism testable at LHC and near future colliders through signals such as like-sign dilepton events (H−−5 → e−e−).
- These signals of the EWνR model have not yet been ruled out by the searches for charged Higgs bosons at the LHC.

- A unified model of DM asymmetry ⇒ Leptogenesis ⇒ Baryogenesis contains Mirror Fermions: Paul Frampton and P. Q. Hung (refer talk "Luminogenesis RG flow" by Kevin Ludwick in Cosmology section this afternoon).

Ajinkya S. Kamat (U. Virginia)
Notes

- Makes Seesaw mechanism testable at LHC and near future colliders through signals such as like-sign dilepton events ($H_{e}^{--} \rightarrow e^M - e^M -$)
Notes

- Makes Seesaw mechanism testable at LHC and near future colliders through signals such as like-sign dilepton events $(H^- \to e^M - e^M -)$

- These signals of the EWν_R model have not yet been ruled out by the searches for charged Higgs bosons at the LHC.
Notes

- Makes Seesaw mechanism testable at LHC and near future colliders through signals such as like-sign dilepton events
 \((H_5^{--} \rightarrow e^M - e^M -)\)

- These signals of the EW\(\nu_R\) model have not yet been ruled out by the searches for charged Higgs bosons at the LHC.

- A unified model of DM asymmetry \(\Rightarrow\) Leptogenesis \(\Rightarrow\) Baryogenesis contains Mirror Fermions: Paul Frampton and P. Q. Hung (refer talk “Luminogenesis RG flow” by Kevin Ludwick in Cosmology section this afternoon).
Thank You!
Backup Slides
Table: $\mu = \sigma / \sigma_{SM}$ for decay channels as measured at CMS and as calculated in EWν_R model in $gg \rightarrow \tilde{H}^0_1$ production channel for given values of the parameters.

<table>
<thead>
<tr>
<th>Decay Channel</th>
<th>Observed μ at CMS</th>
<th>Calculated μ (\sim 5% accuracy) for $b1 = -0.001$ to 0.0001 (-0.0477 to -0.0489)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WW</td>
<td>$0.72^{+0.20}_{-0.18}$ (ggH, VBF, VH channels) [CMS Dec 2013]</td>
<td>$0.68 - 0.76$ ($0.68 - 0.74$)</td>
</tr>
<tr>
<td>ZZ</td>
<td>$0.93^{+0.26}{-0.23}$ (stat) $^{+0.13}{-0.09}$ (syst) (ggH, VBF, t\bar{t}H, VH channels) [CMS Dec 2013]</td>
<td>$0.68 - 0.76$ ($0.68 - 0.74$)</td>
</tr>
<tr>
<td>$\tau\tau$</td>
<td>0.78 ± 0.29 (non-VH channels) [CMS Jan 2014]</td>
<td>$1.03 - 1.16$ ($1.06 - 1.16$)</td>
</tr>
<tr>
<td>bb</td>
<td>1.0 ± 0.5 (VH channels) [CMS Oct 2013]</td>
<td>$1.03 - 1.16$ ($1.06 - 1.16$)</td>
</tr>
<tr>
<td>bb and $\tau\tau$ combined</td>
<td>0.83 ± 0.24 [CMS Jan 2014]</td>
<td>$1.03 - 1.16$ ($1.06 - 1.16$)</td>
</tr>
</tbody>
</table>
Table: Allowed ranges of VEVs. All VEVs are given in GeV.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
<td>$\lesssim v_2$</td>
<td>$\lesssim 234$</td>
</tr>
<tr>
<td>27</td>
<td>$\lesssim v_{2M}$</td>
<td>$\lesssim 234$</td>
</tr>
<tr>
<td>13</td>
<td>$\lesssim v_M$</td>
<td>$\lesssim 80$</td>
</tr>
</tbody>
</table>
Theoretically predicts

- Mirror Fermion sector with opposite chirality to SM Fermions
- BSM Higgs sector with doubly charged Higgs
- BSM contributions to the oblique parameters
To forbid left-handed ν’s from getting large Majorana mass (terms like $g_L l_L^T \sigma_2 \tau_2 \tilde{\chi} l_L$ and $l_L^T \sigma_2 \tau_2 \tilde{\chi} l_R^M$)

$U(1)_M$ symmetry,

$$(l_R^M, e_L^M) \rightarrow e^{i\theta_M}(l_R^M, e_L^M),$$

$$\tilde{\chi} \rightarrow e^{-2i\theta_M}\tilde{\chi},$$

$$\phi_S \rightarrow e^{-i\theta_M}\phi_S$$
To forbid left-handed ν’s from getting large Majorana mass (terms like $g_L l_L^T \sigma_2 \tau_2 \tilde{\chi} l_L$ and $l_L^T \sigma_2 \tau_2 \tilde{\chi} l_R^M$)

$U(1)_M$ symmetry,

$$(l_R^M, e_L^M) \rightarrow e^{i\theta_M}(l_R^M, e_L^M),$$

$$\tilde{\chi} \rightarrow e^{-2i\theta_M}\tilde{\chi},$$

$$\phi_s \rightarrow e^{-i\theta_M}\phi_s$$

Terms like $\bar{q}_L q_R^M, \bar{u}_R u_R^M, \bar{d}_R d_R^M$ also don’t occur
EWν_R model Yukawa couplings

<table>
<thead>
<tr>
<th></th>
<th>SM Quarks</th>
<th>Mirror Quarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g_{H^0_{11} qq}$</td>
<td>$-i \frac{m_q g}{2 M_W s_2}$ ($q = t, b$)</td>
<td>$-i \frac{m_q g}{2 M_W s_2}$ ($q = t, b$)</td>
</tr>
<tr>
<td>$g_{H^0_{11} tt}$</td>
<td>$i \frac{m_t g s_M}{2 M_W c_M} \gamma_5$</td>
<td>$\frac{m_M g s_M}{2 M_W c_M} \gamma_5$</td>
</tr>
<tr>
<td>$g_{H^0_{11} bb}$</td>
<td>$-i \frac{m_b g s_M}{2 M_W c_M} \gamma_5$</td>
<td>$\frac{m_M g s_M}{2 M_W c_M} \gamma_5$</td>
</tr>
<tr>
<td>$g_{H^0_{11} t b}$</td>
<td>$\frac{g s_M}{2 \sqrt{2} M_W c_M}$</td>
<td>$\frac{g s_M}{2 \sqrt{2} M_W c_M}$</td>
</tr>
<tr>
<td></td>
<td>$\times \left[m_t(1 + \gamma_5) - m_b(1 - \gamma_5) \right]$</td>
<td>$\times \left[m_u M(1 - \gamma_5) - m_d M(1 + \gamma_5) \right]$</td>
</tr>
<tr>
<td>$g_{H^0_{33} tt}$</td>
<td>$-i \frac{m_t g s_{2 M}}{2 M_W s_2} \gamma_5$</td>
<td>$\frac{m_M g s_{2 M}}{2 M_W s_2} \gamma_5$</td>
</tr>
<tr>
<td>$g_{H^0_{33} bb}$</td>
<td>$i \frac{m_b g s_{2 M}}{2 M_W s_2} \gamma_5$</td>
<td>$i \frac{m_M g s_{2 M}}{2 M_W s_2} \gamma_5$</td>
</tr>
<tr>
<td>$g_{H^0_{33} t b}$</td>
<td>$i \frac{g s_{2 M}}{2 \sqrt{2} M_W s_2 c_M}$</td>
<td>$i \frac{g s_{2 M}}{2 \sqrt{2} M_W s_2 c_M}$</td>
</tr>
<tr>
<td></td>
<td>$\times \left[m_t(1 + \gamma_5) - m_b(1 - \gamma_5) \right]$</td>
<td>$\times \left[m_u M(1 - \gamma_5) - m_d M(1 + \gamma_5) \right]$</td>
</tr>
</tbody>
</table>
EWνR model Yukawa couplings (contd..)

<table>
<thead>
<tr>
<th>SM Quarks</th>
<th>Mirror Quarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g_{H_1^0 i j}$</td>
<td>$-i \frac{m_l g}{2 M_W s_2}$ $\ldots (l = \tau, \mu, e)$ $g_{H_1^0 M_i i}$</td>
</tr>
<tr>
<td>$g_{H_3^0 i j}$</td>
<td>$-i \frac{m_l g s_M}{2 M_W c_M} \gamma_5$ $g_{H_3^0 M_i i}$</td>
</tr>
<tr>
<td>$g_{H_3^- \nu L i}$</td>
<td>$-i \frac{g m_l s_M}{2 \sqrt{2} M_W c_M} (1 - \gamma_5)$ $g_{H_3^- \nu R i}$</td>
</tr>
<tr>
<td>$g_{H_3^0 3M i i}$</td>
<td>$i \frac{m_l g s_{2M}}{2 M_W s_2} \gamma_5$ $g_{H_3^0 3M i i}$</td>
</tr>
<tr>
<td>$g_{H_3^- 3M \nu L i}$</td>
<td>$-i \frac{g m_l s_{2M}}{2 \sqrt{2} M_W s_2 c_M} (1 - \gamma_5)$ $g_{H_3^- 3M \nu R i}$</td>
</tr>
</tbody>
</table>
SM Fermions Yukawa couplings:

\[\mathcal{L} = -h_{ij} \overline{\psi}_L \Phi \psi_R + h.c. \]

Feynman Rules [PQ, Aranda, Hernández-Sánchez, JHEP11, 2008]

- \[g_{H_1^0 q\bar{q}} = -i \frac{m_q g}{2M_W c_H} \ldots (q = t, b) \]
- \[g_{H_3^0 t\bar{t}} = i \frac{m_t g s_H}{2M_W c_H} \]
- \[g_{H_3^0 b\bar{b}} = -i \frac{m_b g s_H}{2M_W c_H} \]
- \[g_{H_3^0 -t\bar{b}} = i \frac{g s_H}{2M_W c_H} (m_t (1 + \gamma_5) - m_b (1 + \gamma_5)) \]

Similar couplings for SM leptons and mirror quarks.
Mirror Fermions’ kinetic Lagrangian

$$(L_{FM})_{int}$$

$$= \frac{g}{\sqrt{2}} \left[(\bar{u}^M_R \gamma^\mu d^M_{Ri} + \bar{\nu}^i_R \gamma^\mu e^M_{Ri}) W^+_\mu + (\bar{d}^M_R \gamma^\mu u^M_{Ri} + \bar{e}^M_i \gamma^\mu \nu^M_{Ri}) W^-_\mu \right]$$

$$+ \frac{g}{c_W} \left[\sum_{f^M = u^M, d^M, \nu^M, e^M} \left(T^M_3 - s^2_W Q_{f^M} \right) \bar{f}^M_i \gamma^\mu f^M_i \right]$$

$$+ \sum_{f^M = u^M, d^M, e^M} s^2_W Q_{f^M} \bar{f}^M_L \gamma^\mu f^M_L \right] Z_\mu$$

$$+ e \sum_{f^M = u^M, d^M, e^M} Q_{f^M} \left(\bar{f}^M_R \gamma^\mu f^M_R - \bar{f}^M_L \gamma^\mu f^M_L \right) A_\mu$$