Recent Electroweak Results from ATLAS

Haolu Feng On behalf of the ATLAS Collaboration Phenomenology 2014 May 6th, 2014, Pittsburgh

Motivation for Electroweak (Di)Boson Studies

- (Di)Boson production cross section measurement:
 - Test of SM electroweak theory and perturbative QCD at TeV scale
 - Irreducible background to Higgs $(WW, ZZ, Z\gamma)$
 - Sensitive to new particles decaying to dibosons
 - Small cross sections O(1-100 pb)

- Anomalous Gauge Couplings (aGC)
 - aGC modifies total cross sections and kinematics
 - An effective Lagrangian featuring such couplings can be constructed and tested

(Di)Boson Analysis Overview

- Leptonic decay channels
- Experimental signature:
 - \circ isolated high p_T leptons
 - \circ E_T^{miss} if v present
 - Jets (for some study)
- Common backgrounds: Top, V+jets/γ, other diboson processes
 - o Data driven used where possible
- Focus on summary of recent results using <u>8 TeV</u> datasets
 - 7 TeV in backup slides
 - Selections, major backgrounds, results

$WZ \rightarrow lvll$ ATLAS-CONF-2013-021 (13 fb⁻¹,8 TeV)

Main Selection Cuts:

- Z:
- 2 leptons, $p_T > 10 \text{ GeV}$
- $|M_{ll} M_Z| < 10 \text{ GeV}$
- W:
- 3^{rd} lepton, $p_T > 20$ GeV
- $E_T^{miss} > 25 \text{ GeV}$
- $M_T > 20 \text{ GeV}$

Main Systematics: Reco acceptance, BG, luminoisity Measured total cross section: $\sigma_{WZ} = 20.3^{+0.8}_{-0.7}(stat)^{+1.2}_{-1.1}(syst)^{+0.7}_{-0.6}(lumi) \ pb$ SM: $\sigma_{WZ}(NLO) = 20.3 \pm 0.8 \ pb$ σ in common fiducial volume provided as well

$ZZ \longrightarrow UUU$ ATLAS-CONF-2013-020 (20.3 fb⁻¹,8 TeV)

Main Selection Cuts:

- 4 leptons, $p_T > 7 \text{ GeV}$
- Trigger matched lepton: $p_T^{leading} > 25 \text{ GeV}$
- 66 GeV < M_{ll} < 116 GeV (each pair)

Major backgrounds: Z+jets/y, Top, ZZ

Measured total cross section:

 $\sigma_{ZZ} = 7.1^{+0.5}_{-0.4}(stat) \pm 0.3(syst) \pm 0.2(lumi) \ pb$ SM: $\sigma_{WZ}(NLO) = 7.2^{+0.3}_{-0.2} \ pb$ (both Z's in mass window) σ in common fid. vol. provided as well

Vector Boson Scattering

 $VV \rightarrow VV$ provides insight into EWSB mechanism, access to quartic couplings <u>Electroweak VV jj</u> production: Strong VV jj production:

5/6/2014

$W^{\pm}W^{\pm}jj \rightarrow lulujj$

Main Selection Cuts:

- 2 same-sign lepton, $p_T > 25 \text{ GeV}$
- *M_{ll}*> 20 GeV

5/6/2014

- $|M_{ee} M_Z| > 10 \text{ GeV}$
- \geq 2 jets, p_T > 30 GeV
- $E_T^{miss} > 40 \text{ GeV}$, no b-jet
- M_{jj} > 500 GeV; $|\Delta y_{jj}|$ > 2.4(VBS region only) Major backgrounds: prompt l (WZ/ γ +jets), conversion (W γ +jets), non-prompt l

Expected S/B: 0.9

Main Systematics: WZ/γ +jets, norm. theo. unc., JES Measured EW fiducial cross section:

 $\sigma_{W^{\pm}W^{\pm}jj}^{EW} = 1.3 \pm 0.4(stat) \pm 0.2(syst) \ fb$

SM: $\sigma_{W^{\pm}W^{\pm}ii}^{EW}(NLO) = 0.95 \pm 0.06 \ fb$

1st evidence (3.6 σ) for EW $W^{\pm}W^{\pm}jj$ production

Access to WWWW vertex, set 1st limits on aQGC parameters $\alpha_4 \& \alpha_5$

• The $Z \rightarrow 4l$ production was first observed at the LHC by both ATLAS and CMS along with the Higgs boson discovery in the 4l decay channel

H. Feng, Univ. of Michigan

- Measurement approaches:
 - Measure <u>inclusive 4l</u> production cross-section at the Z resonance, i.e. the non-resonance 4l events are treated as *signal*
 - → cross section measurement will be less depending on theory interpretation
 - In determination of $Z \rightarrow 4l$ decay branching fraction, the non-resonance 4l contribution is <u>subtracted</u> and the resonance 4l event yield is normalized by the $Z \rightarrow \mu\mu$ with the same dataset
- Experimental Challenges:
 - The $Z \rightarrow 4l$ process is dominant by low mass m_{34} and low p_T leptons (the p_T -ordered 4th leptons)
 - Need to detect low p_T leptons

arXiv:1403.5657v1 (7 & 8 TeV)

Main Selection Cuts:

- 4 leptons, $p_T > 4/7$ GeV (μ/e)
- $p_T^{leading} > 20, 15, 8/10 \text{ GeV}$
- M₁₂> 20 GeV, M₃₄> 5 GeV
- 4e,4µ: *M*₁₁> 5 GeV

Events / 3 (

60

40

20

• 80 GeV < M_{4l} < 100 GeV

Major backgrounds: VV, Z+jets, Top

Measured total cross section (8 TeV, $M_{1+1^{-}} > 5$ GeV): $\sigma_{Z \to 4l} = 107 \pm 9(stat) \pm 4(syst) \pm 3(lumi) \ fb$ $SM:\sigma_{Z \to 4l}(NLO) = 104.8 \pm 2.5 \ fb$ Measured branching fraction (7 & 8 TeV): $\Gamma_{Z \to 4I} / \Gamma_Z = (3.20 \pm 0.25(stat) \pm 0.13(syst)) \times 10^{-6}$ SM prediction: $(3.33 \pm 0.01) \times 10^{-6}$

250

Zjj <u>JHEP04(2014)031</u> (20.3 fb⁻¹,8 TeV)

Zjj sets constraint on QCD modeling with VBF topology, sets limits on WWZ couplings

1011

- 5 fiducial regions: different sensitivity to EW Zjj
- <u>Search</u>: Optimize for EW Zjj
- <u>Control</u>: Suppress EW *Zjj*, evaluate strong *Zjj*
- <u>Baseline</u>: Most inclusive fiducial region
- <u>High-mass</u>: $M_{jj} > 1$ TeV
- <u>High-</u> p_T : $p_T^{j_1}/p_T^{j_2} > 85/75 \text{ GeV}$

The last 3 regions are chosen with looser selection to study inclusive Zjj production. The last 2 regions are useful to probe the impact of the EW ZjjMajor backgrounds: $t\bar{t}$

	Composition (%)						
Process	baseline	$high-p_{\rm T}$	search	control	high-mass		
Strong Zjj	95.8	94.0	94.7	96.0	85		
Electroweak Zjj	1.1	2.1	4.0	1.4	12		
WZ and ZZ	1.0	1.3	0.7	1.4	1		
$t\bar{t}$	1.8	2.2	0.6	1.0	2		
Single top	0.1	0.1	< 0.1	< 0.1	< 0.1		
Multijet	0.1	0.2	< 0.1	0.2	< 0.1		
WW, W+jets	< 0.1	< 0.1	< 0.1	< 1.1	< 0.1		

5/6/2014

Zjj <u>JHEP04(2014)031</u> (20.3 fb⁻¹,8 TeV)

Main Selection Cuts: p_{T}^{b}

$$\Gamma_{\Gamma}^{\text{palance}} = \frac{\left| \vec{p}_{\mathrm{T}}^{\ell_{1}} + \vec{p}_{\mathrm{T}}^{\ell_{2}} + \vec{p}_{\mathrm{T}}^{j_{1}} + \vec{p}_{\mathrm{T}}^{j_{2}} \right|}{\left| \vec{p}_{\mathrm{T}}^{\ell_{1}} \right| + \left| \vec{p}_{\mathrm{T}}^{\ell_{2}} \right| + \left| \vec{p}_{\mathrm{T}}^{j_{1}} \right| + \left| \vec{p}_{\mathrm{T}}^{j_{2}} \right| }$$

Main Systematics: JES, JER

	1	1	I	I	1		10.		
Object	baseline	high-mass	search	control	$high-p_{\rm T}$	[dd]	10	• • ATLAS	
Leptons	$ \eta^{\ell} < 2.47, p_{\rm T}^{\ell} > 25 {\rm GeV}$					σ _{zjj}		$\int L dt = 20.3 \text{ fb}^{-1}$	
Dilepton pair	$81 \le m_{\ell\ell} \le 101 \text{ GeV}$					_		• • • • • • • • • • • • • • • • • • •	
	-	_	$p_{\mathrm{T}}^{\ell\ell} > 2$	$20 {\rm GeV}$	_		1	• • •	
Jets	$ y^j < 4.4, \Delta R_{j,\ell} \ge 0.3$					-		E	
	$p_{\rm T}^{j_1} > 55 { m ~GeV}$ $p_{\rm T}^{j_1} >$				$p_{\rm T}^{j_1}>85~{\rm GeV}$	_		• Data 2012	
	$p_{\rm T}^{j_2} > 45~{ m GeV}$ $p_{\rm T}^{j_2} >$				$p_{\rm T}^{j_2} > 75~{\rm GeV}$	_	10 ⁻¹	📕 🔺 Powheg (Zjj) + Sherpa (VZ)	
Dijet system	_	$m_{jj} > 1 \text{ TeV}$	$m_{jj} > 2$	$250 {\rm GeV}$	_				
Interval jets	-	_	$N_{\rm jet}^{\rm gap} = 0$	$N_{\rm jet}^{\rm gap} \geq 1$	_	data	1.1 1		
Zjj system	-	_	$p_{\rm T}^{\rm balance} < 0.15$	$p_{\rm T}^{\rm balance,3} < 0.15$	_	- dl d	0.9 0.8	+400X000000X000000+0000000X000000+00000000	
							l	baseline high p ₊ search control high mass	

Measured fiducial cross sections:

5/6/2014

Zjj <u>JHEP04(2014)031</u> (20.3 fb⁻¹,8 TeV)

Summary

- Cross sections:
 - $\circ~$ Compatible with SM expectations
 - $\circ~$ Differential cross section probe MC modelling
- aGCs:
 - \circ Competitive limits obtained
- Plans:
 - $_{\odot}~$ 8 TeV publications in preparation for all VV
 - Working towards combination across channels (& experiments)
 - Need for coherent NLO+PS MC for all analyses; NNLO QCD, NLO EW
 - $\circ~$ VBS/VBF cross sections will rise a lot with the increase in energy
 - 13/14 TeV data will allow measurements of new rare processes, probe NP

$W(l\nu)\gamma, Z(ll/\nu\nu)\gamma$

<u>Phys. Rev. D 87, 112003 (2013)</u> (4.6 fb⁻¹,7 TeV)

Main Selection Cuts:

- Common:
- $\Delta R(l, \gamma) > 0.7$ to surpress FSR photon
- 1 isolated photon, $E_T^{\gamma} > 15 \text{ GeV}$
- $W\gamma(l\nu\gamma)$:
- 1 lepton, $p_T > 25 \text{ GeV}$
- $E_T^{miss} > 35 \text{ GeV}, M_T^{l\nu\gamma} > 40 \text{ GeV}$
- $|M_{e\gamma} M_Z| > 15 \text{ GeV}$
- $Z\gamma(ll\gamma)$:
- 2 opposite charge lepton, $M_{ll} > 40 \text{ GeV}$
- Ζγ(ννγ):
- $E_T^{\gamma} > 100 \text{ GeV}, E_T^{miss} > 90 \text{ GeV}$
- $\Delta \phi(E_T^{miss}, \gamma) > 2.6, \Delta \phi(E_T^{miss}, jet) > 0.4$

Major backgrounds: W+jets, y+jets, Zll

Measured total cross section:

$\sigma^{\text{ext-fid}}[\text{pb}]$					
MCFM Prediction					
$N_{\rm jet} \ge 0$					
1.96 ± 0.17					
1.96 ± 0.17					
1.96 ± 0.17					
1.18 ± 0.05					
1.18 ± 0.05					
1.18 ± 0.05					
0.156 ± 0.012					
1.39 ± 0.13					
1.39 ± 0.13					
1.39 ± 0.13					
1.06 ± 0.05					
1.06 ± 0.05					
1.06 ± 0.05					
0.115 ± 0.009					

$W(l\nu)\gamma, Z(ll/\nu\nu)\gamma$

Phys. Rev. D 87, 112003 (2013) (4.6 fb⁻¹,7 TeV)

5/6/2014

$WW \rightarrow l \upsilon l \upsilon$

Phys. Rev. D 87, 112001(2013) (4.6 fb⁻¹,7 TeV)

Main Selection Cuts:

- 2 isolated opposite sign leptons $p_T^{leading}/p_T^{sub-leading} > 25/20 \text{ GeV}$
- $|M_{11} M_Z| > 15/10 \text{ GeV} (SF/OF)$
- $E_{T,Rel}^{miss}$ > 45/25 GeV (SF/OF)
- **JetVeto**
- $p_{T}^{ll} > 30 \text{ GeV}$

Major backgrounds: V+jets, Top, VV Expected S/B: 2.3 Main Systematics: Jet Veto Efficiency Measured total cross section: $\sigma_{WW} = 51.9 \pm 2.0(stat) \pm 3.9(syst) \pm 0.9(lumi) \ pb$ SM: $\sigma_{WW}(NLO) = 44.7^{+2.1}_{-1.9} \ pb$

$WW/WZ \rightarrow lvq\bar{q}'$

Main Selection Cuts: (electron)

- 1 lepton, $p_T > 25 \text{ GeV}$
- 2 jets, $p_T^{leading}/p_T^{sub-leading} > 30/25 \text{ GeV}$
- $E_T^{miss} > 30 \text{ GeV}$
- $M_T^{l\nu} > 40 \text{ GeV}$
- $\Delta \phi (E_T^{miss}, j^1) > 0.8, \Delta R(j^1, j^2) > 0.7, \Delta \eta (j^1, j^2) < 1.5$

Expected S/B: 0.027 Major backgrounds: V+jets Main Systematics: MC stats, JES, W/Z+jets norm. Measured total cross section:

 $\sigma_{WW+WZ} = 72 \pm 9(stat) \pm 15(syst) \pm 13(MC \ stat.) \ pb$ SM: $\sigma_{WW+WZ}(NLO) = 63.4 \pm 2.6 \ pb$

$WWjj \rightarrow lvlvjj$ Candidate Event Display

$Z \rightarrow 4l$ Candidate Event Display

