Measuring the 2HDM potential: hH associated production

Andrea Peterson
University of Wisconsin-Madison

with V. Barger, L. Everett, C. Jackson, and G. Shaughnessy
arXiv:1405.xxxx

May 6th, 2014 – Pheno 2014 – Pittsburgh, PA
Higgs pair production

- Higgs pair production provides insight into scalar sector and potential new physics
- Production through gluon fusion
- Contributions from box and triangle diagrams interfere

⇒ Implement ggH, ggH, and $gghH$ vertices in MadGraph5, including NNLO K-factor

see also V. Barger, L. Everett, C. Jackson, and G. Shaughnessy, arXiv:1311.2931
Potential includes three triscalar terms among CP-even Higgs bosons.

Couplings probed by multiple processes:

<table>
<thead>
<tr>
<th>Process</th>
<th>λ^{hhh}</th>
<th>λ^{hhH}</th>
<th>λ^{hHH}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$pp \rightarrow hh$ (continuum)</td>
<td>✓</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>$pp \rightarrow H \rightarrow hh$</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>$pp \rightarrow h^/H^ \rightarrow hH$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Leave out for CP-odd Higgs for now, but hA is also an interesting channel.
In Type-II 2HDM, triscalar (and Yukawa) couplings are set by model parameters (M_H, M/M_H, $\tan \beta$, $\cos(\beta - \alpha)$):

$$\lambda_{hhH} = \frac{\cos(\beta - \alpha) M^2 (\sin 2\beta - 3 \sin 2\alpha) + (2M_h^2 + M_H^2) \sin 2\alpha}{\sin 2\beta \frac{v}{\sin 2\beta}}$$

$$\approx \cos(\beta - \alpha) \frac{4M^2 - 2M_h^2 - M_H^2}{v} + O(\cos^2(\beta - \alpha))$$

$$\lambda_{hHH} = \frac{\sin(\beta - \alpha) M^2 (\sin 2\beta + 3 \sin 2\alpha) - (M_h^2 + 2M_H^2) \sin 2\alpha}{\sin 2\beta \frac{v}{\sin 2\beta}}$$

$$\approx \frac{-2M^2 + M_h^2 + 2M_H^2}{v} + O(\cos(\beta - \alpha))$$
Constraints

- Perturbative unitarity
- Bounded scalar potential
- Direct search for heavy Higgs

Fix $M/M_H = 0.8$, scan over $\tan \beta$, $\cos(\beta - \alpha)$, and M_H

Preliminary

grey = unitarity violated, pink = potential unstable
Let $h \rightarrow \gamma \gamma$ – low backgrounds

Consider two decay channels for H: $b\bar{b}$ and $hh \rightarrow 4b$
- Large branching fractions
- Sensitivity in different regions of M_H
- Ability to fully reconstruct events

Preliminary
The $b\bar{b}\gamma\gamma$ channel

- **Irreducible backgrounds:**
 - continuum $b\bar{b}\gamma\gamma$
 - $b\bar{b}h$, with $h \to \gamma\gamma$
 - Zh, with $Z \to bb$, $h \to \gamma\gamma$ (negligible for $M_{bb} > 100$ GeV)

- **Reducible backgrounds:**
 - $b\bar{b}e^+e^-$
 - $b\bar{b}j\gamma$
 - $b\bar{b}jj$
 - $jj\gamma\gamma$
 - $3j + \gamma$
 - $4j$ (negligible)

- Include tagging efficiencies and mistag rates for $e^\pm \to \gamma$, $j \to \gamma$, and $j \to b$
Substantial improvement in significance using MVA

Define MVA discriminant

\[D = \frac{\prod_{i=1}^{N} \delta_i S(O_i)}{\prod_{i=1}^{N} \delta_i S(O_i) + \prod_{i=1}^{N} \delta_i B(O_i)} \]

Cut on \(D \) to isolate high-signal sample

Compute significance:

\[S = 2 \left(\sqrt{S + B} - \sqrt{B} \right) \]

Bartsch and Quast, CERN-CMS-NOTE-2005-004
Multivariate Analysis

- Can toggle over included observables to maximize significance
- Best observable set for this channel:

\[\mathcal{O} = \{ M_{b\bar{b}}, M_{\gamma\gamma}, p_T(b\bar{b}), p_T(\gamma\gamma) \} \]
The \(hh\gamma\gamma \rightarrow 4b + \gamma\gamma \) channel

- Only two important backgrounds:
 - continuum \(4b + \gamma\gamma \)
 - \(b\bar{b}jj\gamma\gamma \)

- Total background very small
 - about 3 events at 3 \(ab^{-1} \)!
- MVA provides no advantage; cut based analysis best
- Cut on diphoton invariant mass eliminates most of the background

- Event reconstruction more complicated than \(b\bar{b}\gamma\gamma \) case
 - Daughters of heavy Higgs cluster together – cut on \(\Delta R(h_i; h_j) \)
LHC will be able to probe significant portion of parameter space

Sensitivity is best for small $\cos(\beta - \alpha)$ – a test of the decoupling limit!

$H \rightarrow b\bar{b}$ channel sensitive for small M_H, $H \rightarrow hh$ channel for $2M_h < M_H < 2m_t$
Measuring scalar couplings is an essential part of understanding the Higgs sector and testing for new physics.

hH production directly probes couplings other processes don’t.

LHC can attain good reach, especially near the decoupling limit!
Backup: Effect of interference

The 2HDM: hH associated production

\[y_t^H = y_t^{SM} \]
\[y_t^H = - y_t^{SM} \]

LHC 14 TeV

\[\lambda_{hhH} = \lambda_{hHH} \text{ (GeV)} \]

\[\sigma \text{ (pb)} \]

A. Peterson
The 2HDM: hH associated production
Backup: Higgs identification

A. Peterson

The 2HDM: hH associated production