

Quarkonia and quarkonia-like spectroscopy at LHCb

Pheno 2014 Maddalena Frosini (INFN-Florence)

May 6, 2014 on behalf of the LHCb Collaboration

substituting for Bo Liu (INFN-Cagliari)

Introduction

- In recent years, new exotic mesons have been observed by different experiments:
 - ► *X*(3872), *X*(4140), *Z*(4430)-...
 - ▶ X(3872) first assigned to $c\bar{c}$ states but they don't fit standard charmonium model.
- ▶ Many models exists, all with limited success.
 - Tetraquark: Tightly bound four quark.
 - Molecular state: Loosely bound mesons with a quark/color exchange (short distance) or pion exchange (large distance).
 - ▶ Charmonium hybrids: States with excited gluonic degrees of freedom.
 - Threshold effects: Virtual states at thresholds.

$X(3872) \rightarrow \psi(2S)\gamma$ decay

- ▶ Predictions for $B(X(3872) \rightarrow \psi(2S)\gamma)/B(X(3872) \rightarrow J/\psi\gamma)$ vary widely in different models.
 - $c\overline{c}$ (2³P₁) interpretation: ~ 1.2-15. Phys.Rev.D79:094004,2009; Phys. Rev. D85 (2012) 114002
 - In molecular picture: $\sim 3 \times 10^{-3}$. arXiv:1401.4431
 - mixture of $c\overline{c}$ and DD^* : 0.5-5.

Phys. Rev. D85 (2012) 114002; Phys. Rev. D73 (2006) 014014

- ▶ BaBar observed the X(3872) → $\psi(2S)\gamma$ decay in B^+ → $X(3872)K^+$ decays and measured the ratio. [Phys. Rev. Lett. 102 (2009) 132001]
- In 2011 Belle hadn't observed the $X(3872) \rightarrow \psi(2S)\gamma$ decay and set a limit. [Phys. Rev. Lett. 107 (2011) 091803]
- Can be tested by a hadron collider.

2D mass fit

- Combinatorial bkg.
- Peaking bkg. $\begin{cases} B^+ \to J/\psi(K^{*+} \to K^+(\pi^0 \to \gamma \gamma)) \text{ one } \gamma \text{ missing for } J/\psi \gamma \\ B^+ \to \psi(2S)K^+ + x \text{ with random } \gamma \text{ for } \psi(2S)\gamma \end{cases}$

Systematic uncertainties

Source	Uncertainty [%]
$X(3872) \rightarrow J/\psi \gamma$ yield determination	6
$X(3872) \rightarrow \psi(2S)\gamma$ yield determination	7
Photon reconstruction	6
B ⁺ kinematics	3
Selection criteria	2
Trigger	1
$\mathcal{B}(J/\psi \to e^+e^-)/\mathcal{B}(\psi(2S) \to e^+e^-)$	2
Simulation sample size	1
Sum in quadrature	12

Results and comparison

▶ An evidence for $X(3872) \rightarrow \psi(2S)\gamma$ in $B^+ \rightarrow X(3872)K^+$ decay with significance of 4.4σ is obtained

$$R_{\psi\gamma} = \frac{\mathcal{B}(\mathrm{X}(3872) \to \psi(2\mathrm{S})\gamma)}{\mathcal{B}(\mathrm{X}(3872) \to \mathrm{J}/\psi\gamma)} = 2.46 \pm 0.64 \pm 0.29$$

$$= \frac{\mathrm{BaBar\ 2009\ [Phys.\ Rev.\ Lett.\ 102\ (2009)\ 132001]}}{\mathrm{Belle\ 2011\ [Phys.\ Rev.\ Lett.\ 107\ (2011)\ 091803]}}$$

$$= \frac{\mathrm{L}HCb}{\mathrm{[Phys.\ Rev.\ D79:094004,2009;\ Phys.\ Rev.\ D85\ (2012)\ 114002]}}{\mathrm{predictions\ for\ pure\ Cc\ state}}$$

$$= \frac{\mathrm{predictions\ for\ pure\ DD^*\ model}}{\mathrm{[Phys.\ Rev.\ D85\ (2012)\ 114002;\ Phys.\ Rev.\ D73\ (2006)\ 014014]}}$$

$$= \frac{\mathrm{X}(3872)\ \mathrm{cannot\ be\ a\ pure\ DD^*\ molecule}}{\mathrm{predictions\ for\ admixture\ of\ Cc\ and\ DD^*}}$$

The puzzle of $Z(4430)^{-1}$

- ► $Z(4430)^- \rightarrow \psi(2S)\pi^-$ observed by Belle in sample of $B^0 \rightarrow \psi(2S)K^+\pi^-$
- ▶ Not confirmed by BaBar (Not excluded, either).

PRD88 (2013) 074026 PRD79 (2009) 112001

- ▶ Charged state, not described by quark model, $c\overline{c}u\overline{d}$?
- ▶ 4D amplitude fit required to disentangle the many interfering resonances in this system.

Z(4430)⁻ at LHCb

- >25k $B^0 \rightarrow \psi(2S)K^+\pi^-$ candidates, factor 10 more than BaBar/Belle
- Perform two separate analyses
 - Model independent (BaBar) using harmonic moments of K^* decay angle
 - Model dependent (Belle) using 4D amplitude fit
- Background from sidebands

arXiv:1404.1903

Model independent approach

- No constrain to any combination of known *K* resonances, but restriction on their maximal spin. PRD88 (2013) 074026
- Check if $m_{\psi'\pi}$ distribution can be understood in terms of structures caused via angular momentum conservation.
- Moments of K^* resonances $(J \le 2)$ are unable to explain $_$ observed distribution of $m_{\psi'\pi}$.
- Need 4D amplitude fit to determine the Z(4430)⁻ parameters.

Reflections of $cos\theta_{K^*}$ moments

 \vec{p}_{K^+}

4D fit projections

$m_{\psi'\pi}$ in different $m_{K\pi}$ region

arXiv:1404.1903

Spin determination

- $I^P = 1^+$ assignment favoured (confirms Belle)
- Rule out other J^P with large significance (> 9.7 σ)

$$\Delta(-2\ln L) = [-2\ln L(0^{-})] - [-2\ln L(1^{+})]$$

Resonant behaviour

- ▶ Replace BW amplitude with 6 independent complex numbers in Z region.
- Observe rapid change of phase near maximum of magnitude → Resonance!

Second exotic *Z*?

- ▶ Fit confidence level increases to 26%.
- ▶ Significance from $\Delta(-2\ln L)$ is 6σ .
- ▶ Need larger samples to characterise this state. arXiv:1404.1903

Evidence from model-independent approach, and measurement of phase motion inconclusive.

Summary

- ▶ An evidence for $X(3872) \rightarrow \psi(2S)\gamma$ in $B^+ \rightarrow X(3872)K^+$ decay with significance of 4.4 σ is obtained.
- ▶ Branching ratio measured with respect to X(3872)→J/ψγ, the measured ratio is comparable to BaBar and Belle results. arXiv:1404.1903
- ► LHCb has confirmed the existence of the Z(4430).
- $J^{P} = 1^{+}$
- Possible second exotic state around 4240?

