Measurement of Differential Cross Sections of W+jets and Z+jets Processes with the CMS Detector at the LHC

Darin C. Baumgartel

For the CMS Collaboration

May 6, 2014
Outline

The Experimental Apparatus
- The CMS detector

Motivations

Measurement Distributions
- What is measured?
- Selections and objects

Signal Extraction
- Signal and background modeling

Background subtraction and unfolding

Uncertainties

Results
- Overview of theory predictions
- Differential cross section measurements

Conclusions / looking forward

BackUp
Outline

The Experimental Apparatus

The CMS detector

Motivations

Measurement Distributions

What is measured?

Selections and objects

Signal Extraction

Signal and background modeling

Background subtraction and unfolding

Uncertainties

Results

Overview of theory predictions

Differential cross section measurements

Conclusions / looking forward

BackUp
The CMS detector

The Compact Muon Solenoid (CMS) detector

- Inner silicon tracker to determine the tracks and vertices.
- PbWO$_4$ ECAL and brass-scintillator HCAL to measure the energies of photons, electrons, and hadrons.
- Muon subsystem with DTs, RPCs, and CSCs to measure muons with p_T up to 1 TeV in p_T with resolution of 1-5%.
Outline

The Experimental Apparatus
 The CMS detector

Motivations

Measurement Distributions
 What is measured?
 Selections and objects

Signal Extraction
 Signal and background modeling

Background subtraction and unfolding

Uncertainties

Results
 Overview of theory predictions
 Differential cross section measurements

Conclusions / looking forward

BackUp
Motivation

- Fundamental test of perturbative QCD.
- Test performance of MC generators and calculations, and provide measurement spectra to test performance and parameters of MC generators and theoretical calculations.

\[W \rightarrow \mu \nu + n \text{jets} \quad n=1-6 \quad Z \rightarrow l^+l^- + n \text{jets} \quad n=1-6 \quad l=e,\mu \]

CMS SMP-12-023

CMS SMP-12-017
V+jets as a background

- V+jets is an important background to searches (SUSY, exotics) and measurements (Other SM and Higgs)

![Graph showing data, signal, and background contributions](image)

Graph Description:
- The graph displays the production cross section for W+jets and Z+jets processes with the CMS Detector at the LHC.
- The data points are categorized by different channels and backgrounds.
- The CMS Preliminary measurement is shown for the LHC running at 8 TeV, with data points indicating the production cross sections.

Measurement of Differential Cross Sections of W+jets and Z+jets Processes with the CMS Detector at the LHC

- **Graph Details:**
 - The measurements are for different production channels such as tW, s-channel, and t-channel.
 - The CMS Preliminary data is shown for 5.0 fb⁻¹ at 8 TeV, with a clear distinction between signal and background contributions.

Results

- The experimental apparatus motivations include measurement distributions, signal extraction, and uncertainties.
- The conclusions look forward to future enhancements and improvements in background suppression.

Textual Notes:*
- V+jets as a background is crucial for SUSY and exotic searches.
- Measurements are essential for understanding the Standard Model and Higgs interactions.
- The CMS detector provides precise measurements at the LHC for these processes.
Outline

The Experimental Apparatus
 The CMS detector

Motivations

Measurement Distributions
 What is measured?
 Selections and objects

Signal Extraction
 Signal and background modeling

Background subtraction and unfolding

Uncertainties

Results
 Overview of theory predictions
 Differential cross section measurements

Conclusions / looking forward

BackUp
What is measured?

Variables and Motivation

Jet Multiplicities

- How well-modeled are multiplicities by ME+PS MC?
- How does this compare to NLO predictions?

Kinematics

- Jet transverse momenta (p_T) is often cut on for final states in many CMS analyses.
- Jet p_T is sensitive to higher order corrections.
- Scalar sum of jet momenta (H_T) is also used as a component of factorization and renormalization scale choices.
- Angular variables, like η, are sensitive to modeling of parton emission.
Particle-level phase space

- Due to trigger limitations, measurements are fiducial.
- The particle-level is defined similar to the cuts on reconstructed events.

<table>
<thead>
<tr>
<th>Z+Jets</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ $\ell^+\ell^-$ with $\ell = e$ or μ</td>
</tr>
<tr>
<td>▶ $p_T(\ell) > 20$ GeV, $</td>
</tr>
<tr>
<td>▶ $71 < M(\ell,\ell) < 111$ GeV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>W+Jets</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Muon with $p_T > 25$ GeV, $</td>
</tr>
<tr>
<td>▶ $M_T(\mu,\not!E_T) > 50$ GeV</td>
</tr>
</tbody>
</table>

Object properties

- Jets are anti-kT jets with $R = 0.5$. $p_T > 30$ GeV, $|\eta| < 2.4$.
 - Considering all generated particles except neutrinos
 - Separated from leptons with $\Delta R > 0.5$
- Leptons are “dressed” to account for FSR
 - Adding to lepton \vec{p} all photon \vec{p} within $\Delta R < 0.1$
Reconstructed event selection

- Same overall kinematic requirements as the particle-level.
- Only trigger, identification, and signal-purity conditions are added.

Z+Jets Selection

- Dilepton trigger (17 GeV, 8 GeV)
- $71 < M(\ell^+, \ell^-) < 111$ GeV
- PU-corrected lepton isolation

W+Jets Selection

- Isolated μ trigger $p_T > 24$ GeV, $|\eta| < 2.1$
- Muon relative isolation
 - $(\text{Ecal} + \text{Hcal} + \text{Trk})/p_T < 0.15$
- Suppress $t\bar{t}$ contamination
 - Veto events with ≥ 1 bjet
Outline

The Experimental Apparatus
 The CMS detector

Motivations

Measurement Distributions
 What is measured?
 Selections and objects

Signal Extraction
 Signal and background modeling

Background subtraction and unfolding

Uncertainties

Results
 Overview of theory predictions
 Differential cross section measurements

Conclusions / looking forward

BackUp
Background and Signal Simulation

- \(W \) and \(Z/\gamma^* \) events (\(N_{\text{partons}} \leq 4 \)), with \textit{MadGraph 5.1.1}
 - Normalized to NNLO calculation from \textit{FEWZ}
 - Using CTEQ6L1 PDF
- \(t\bar{t} \) events, generated with \textit{Madgraph 5.1.1}
- DiBoson \(WW, WZ, ZZ \) generated with \textit{Pythia 6.424}
- Single-top quark events, generated with \textit{Powheg}
- Pileup modeled in the MC

Z+Jets Backgrounds
- All background estimated with MC
- QCD is found to be negligible

W+Jets Backgrounds
- Most backgrounds estimated with MC
- QCD estimated with data in inverted isolation control region.
Background subtraction and unfolding

Unfolding

- Deconvolution is performed with regularized SVD unfolding using **ROOUNFOLD**
 - Arxiv 1105.1160
- Background is subtracted from data
- Response is trained on the **MADGRAPH** signal MC
- The unfolding procedure uses the response matrix to invert the effects of reconstruction, and estimate the deconvoluted distribution.
- **ROOUNFOLD** allows for treatment of misreconstructed and fake objects
 - i.e. differences between the Gen and Reco level

Response Matrix

- A response matrix defines the probability of migration from a true quantity to a reconstructed quantity
Outline

The Experimental Apparatus
 The CMS detector
Motivations
Measurement Distributions
 What is measured?
 Selections and objects
Signal Extraction
 Signal and background modeling
Uncertainties
 Background subtraction and unfolding
Results
 Overview of theory predictions
 Differential cross section measurements
Conclusions / looking forward
BackUp

Measurement of Differential Cross Sections, of W+jets and Z+jets Processes, with the CMS Detector at the LHC
Systematic uncertainties

- Systematic uncertainties are propagated through the unfolding
 - Including jet energy and lepton momentum scale and resolution
 - Corrections for reconstruction, ID, isolation efficiencies
 - The statistics of the data-background and of the response matrix

Z+jets

<table>
<thead>
<tr>
<th>Systematic source</th>
<th>(\frac{d\sigma}{dN})</th>
<th>(\frac{d\sigma}{dp_T}) 1st jet</th>
<th>(\frac{d\sigma}{dp_T}) 2nd jet</th>
<th>(\frac{d\sigma}{dp_T}) 3rd jet</th>
<th>(\frac{d\sigma}{dp_T}) 4th jet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>JEC+JER</td>
<td>2.0-17.7</td>
<td>4.9-8.7</td>
<td>6.3-16.2</td>
<td>8.8-15.1</td>
<td>15.2-21.5</td>
</tr>
<tr>
<td>Unfolding</td>
<td>1.7-8.1</td>
<td>1.3-22.0</td>
<td>0.5-21.4</td>
<td>0.8-13.2</td>
<td>0.3-11.8</td>
</tr>
<tr>
<td>PU</td>
<td>0.3-0.8</td>
<td>0.2-2.7</td>
<td>0.3-1.1</td>
<td>0.2-0.7</td>
<td>0.5-1.1</td>
</tr>
<tr>
<td>Bkg XSec</td>
<td>0.8-25.3</td>
<td>0.1-1.1</td>
<td>0.6-1.8</td>
<td>1.6-3.3</td>
<td>2.7-4.7</td>
</tr>
<tr>
<td>Total Systematics</td>
<td>2.8-31.9</td>
<td>5.1-23.5</td>
<td>9.0-26.8</td>
<td>10.2-20.0</td>
<td>16.9-24.8</td>
</tr>
<tr>
<td>Statistics</td>
<td>0.7-6.3</td>
<td>0.1-7.5</td>
<td>1.5-12.8</td>
<td>3.0-13.1</td>
<td>6.2-19.6</td>
</tr>
</tbody>
</table>
Outline

The Experimental Apparatus
The CMS detector

Motivations

Measurement Distributions
What is measured?
Selections and objects

Signal Extraction
Signal and background modeling

Uncertainties

Results
Overview of theory predictions
Differential cross section measurements

Conclusions / looking forward

BackUp
Overview of theory predictions

- Several comparisons to MC generators and calculations are performed
- Including an NLO calculation from Sherpa2 or Blackhat+Sherpa
- Intended as comparisons with common tools, not complete picture.

Z+Jets Predictions

- **NLO from Sherpa2 (beta2)**
 - CT10 PDF
 - NLO virtual corrections with Blackhat library
 - NLO for 0+1 jet, merged with LO for up to four real emissions matched to PS
 - PS with Pythia6

- **Powheg + Pythia6**

- **Madgraph 5.1.1 + Pythia 6.424**
 - Same as for unfolding

W+Jets Predictions

- **NLO from Blackhat+Sherpa**
 - CT10 PDF
 - Parton-level predictions corrected for showering using MadGraph+Pythia
 - NLO up to four jets, fixed order predictions

- **Sherpa 1.4**

- **Madgraph 5.1.1+Pythia 6.424**
 - Same as for unfolding
The jet multiplicity

CMS Preliminary

\(\sigma = 7 \text{ TeV} \) L_{int} = 4.9 fb

Data
Sherpa2 (0,1@NLO ≤4@LO +PS)
Powheg+Pythia6 (Z+1@NLO +PS)
MadGraph+Pythia6 (≤4@LO +PS)

- Inclusive jet multiplicity
- Agreement within uncertainties across jet multiplicity.

Measurement of Differential Cross Sections, of W+jets and Z+jets Processes, with the CMS Detector at the LHC
The jet transverse momentum

Good agreement w/ NLO, some mis-modeling with MadGraph/Sherpa
Differential cross section measurements

The sum of jet transverse momenta (H_T)

Some deficits in NLO due to lack of higher order contribution
Differential cross section measurements

The jet pseudorapidity (|η|)

- **Measurement of Differential Cross Sections, of W+jets and Z+jets Processes, with the CMS Detector at the LHC**

- **Good agreement in |η| with all predictions.**

Differential cross section measurements

The Experimental Apparatus

Motivations

Measurement Distributions

Signal Extraction

Uncertainties

Results

Conclusions / looking forward

BackUp
The jet-muon angular separation

Some disagreement at low $\Delta \phi(\mu, \text{jet})$ for the leading jet.
Outline

The Experimental Apparatus
The CMS detector
Motivations
Measurement Distributions
What is measured?
Selections and objects
Signal Extraction
Signal and background modeling

Background subtraction and unfolding
Uncertainties
Results
Overview of theory predictions
Differential cross section measurements
Conclusions / looking forward
BackUp
Conclusions and looking forward.

- We have measured the Z+jets and W+jets cross sections as a function of jet multiplicity up to 6 jets and differentially as a function of several kinematic variables up to 4 jets.
 - The jet transverse momentum
 - The jet pseudorapidity
 - The scalar sum of jet transverse momenta (H_T)
- Deconvoluted detector affects using regularized SVD unfolding
- Accounted for important systematics including energy and momentum scales and reconstruction modeling
- Compared with predictions from MC generators and NLO calculators
- Found good agreement with predictions in most generators
 - Some disagreement observed in p_T, H_T, and $\Delta\phi(\ell,\text{jet})$ distributions
- Measurements serve as a good fundamental test of perturbative QCD and improve understanding of major backgrounds in LHC searches and measurements.
BackUp Plots
Exclusive jet multiplicity

CMS Preliminary

$\frac{d^2N}{d^2p_T}$ ($p_T^* > 30$ GeV, $|\eta^*| < 2.4$

$Z/\gamma^{*} \rightarrow ll$ channel

$\frac{d^2N}{d^2p_T}$ ($p_T^* > 30$ GeV, $|\eta^*| < 2.4$

$W \rightarrow ll\nu$ channel

Theory/Data 0.5

1

1.5

2

3

σ_{NLO} Madgraph (LO+PS), Normalized to σ_{NLO}
The sub-leading jet p_T

Measurement of Differential Cross Sections, of $W+$jets and $Z+$jets Processes, with the CMS Detector at the LHC

Figure:
- **CMS Preliminary:** Comparison of theoretical predictions with data for jet p_T distributions.
- **Data:** Measurement of differential cross sections for $W+$jets and $Z+$jets processes.
- **Theoretical Models:**
 - Sherpa (LO+PS)
 - Powheg+Pythia6 (Z+1j@NLO+PS)
 - MadGraph+Pythia6 (Z+1j@NLO+PS)
 - BlackHat+Sherpa (NLO)

Distributions:
- Anti-k_T ($R = 0.5$) Jets $p_T > 30$ GeV, $|\eta| < 2.4$
- $Z/\gamma^* \rightarrow \ell\ell$ channel

Results:
- $s = 7$ TeV, $L_{\text{int}} = 5.0$ fb$^{-1}$
- NLO/Data, with PDF and Ren./Fac. Scale Unc.
- MC/Data, with PDF and Ren./Fac. Scale Unc.

Conclusions / looking forward:
- Evaluation of theoretical predictions against experimental data.
- Further analysis and improvements in jet substructure studies.

Table:
- Summary of p_T distributions for jets in the $W+$jets and $Z+$jets processes.
- Cross sections in pb/GeV for different theoretical models.

Graphs:
- Comparison of data with predictions for jet p_T distributions.
- Different scales and binning for jet p_T.

References:
- CMS Preliminary Report.
- Theoretical and experimental collaborations.

Further Reading:
- Detailed analysis of jet substructure in high-energy physics.
- Advanced techniques for jet reconstruction and analysis.

Acknowledgments:
-Contributions from various institutions and collaborations.
- Support from funding agencies and scientific communities.

Appendix:
- Technical details of the experimental apparatus.
- Methodology for signal extraction and uncertainties.

BackUp:
- Additional material for further analysis and discussion.
The third-leading jet p_T

![Graph showing the measurement of differential cross sections for W+jets and Z+jets processes with the CMS detector at the LHC.](image)

Measurement of Differential Cross Sections, of W+jets and Z+jets Processes, with the CMS Detector at the LHC
The fourth-leading jet p_T
The H_T for ≥ 2 jet events
The H_T for ≥ 3 jet events

Measurement of Differential Cross Sections, of W+jets and Z+jets Processes, with the CMS Detector at the LHC
The H_T for ≥ 4 jet events

Measurement of Differential Cross Sections, of W+jets and Z+jets Processes, with the CMS Detector at the LHC
The sub-leading jet pseudorapidity ($|\eta|$)

Measurement of Differential Cross Sections, of W+jets and Z+jets Processes, with the CMS Detector at the LHC
The third-leading jet pseudorapidity ($|\eta|$)

Measurement of Differential Cross Sections, of W+jets and Z+jets Processes, with the CMS Detector at the LHC
The fourth-leading jet pseudorapidity ($|\eta|$)
The jet-muon angular separation for the third and fourth leading jet