Beauty in ATLAS: New physics searches, spectroscopy and decay properties of B-hadrons

Hok-Chuen Cheng (hccheng@umich.edu)
(University of Michigan, Ann Arbor)
On behalf of the ATLAS collaboration

May 5-7, Phenomenology 2014 Symposium
Outline

• B-physics in a nutshell
• The ATLAS experiment at LHC
• Parity violation in the decay $\Lambda_b^0 \to J/\psi \Lambda^0$
• CP violation in $B_s^0 \to J/\psi \phi$ (Brief summary)
• Rare decay of $B_s^0 \to \mu^+ \mu^-$ (Brief summary)
• Summary and outlook
B-physics in a nutshell

- **B-physics investigates physics of mesons and baryons containing at least one bottom quark**
- **B-physics at ATLAS:**
 - Large beauty production cross section and high luminosity provide high sensitivity to B-hadrons
 - Focus on competitive topics:
 - Testing CP Violation through decay parameters that influence CKM matrix elements
 - Studying heavy flavor meson and baryon production and decay properties, e.g. cross section, lifetime, etc
 - Testing predictions of heavy quark interaction models, e.g. HQET, factorization, heavy quark expansion, etc
 - New physics searches through rare and very rare decays which are highly suppressed in SM
Tracking system (Pixel, SCT & TRT) reconstruct trajectories and momenta of charged particles; **crucial for identifying the b decay products**

EM/hadronic calorimeters energy deposition of particles and missing energy

Muon spectrometer precise tracking and momentum measurement of muons; for study of b-jets containing J/ψ (final products are a muon pair)
Triggers & data taking at ATLAS

Triggers for B-physics

• Reduce huge collision data rate from ~40MHz to ~500Hz
• Most B-physics channels studied at ATLAS have di-muon signature ($B \rightarrow J/\psi(\mu\mu)X$, $B \rightarrow \mu\mu$, etc.)
• Main B-physics triggers in ATLAS
 ◦ single or di-muon triggers
 ◦ topological triggers (invariant mass window for J/ψ, B_s, Upsilon(Υ), etc)

Data taking

• Run 1 (2010-2012) ended. Upgrades and preparation for Run 2 in 2015 are ongoing
• Data recorded for pp-collisions:
 ◦ **45 fb$^{-1}$ in 2010** ($\sqrt{s} = 7$ TeV, max lumi 2.1×10^{32} cm$^{-2}$s$^{-1}$)
 ◦ **5.1 fb$^{-1}$ in 2011** ($\sqrt{s} = 7$ TeV, max lumi 3.6×10^{33} cm$^{-2}$s$^{-1}$)
 ◦ **21.3 fb$^{-1}$ in 2012** ($\sqrt{s} = 8$ TeV, max lumi 7.7×10^{33} cm$^{-2}$s$^{-1}$)
• Excellent acquisition efficiency (>90%) and detector performance
• More suitable triggers for heavy quark physics in 2010 and 2011 data due to lower thresholds. Updates of analyses using 2012 data are ongoing
Parity violation in the decay $\Lambda_b^0 \to J/\psi \Lambda^0$

- Parity violation is a well-known feature of weak interactions. It is **not maximal in decays of hadrons** due to the presence of **strongly coupled spectator quarks**.
- Results of parity violation measurement can be used to test predictions made by different **quark interaction models**.

Four possible helicity amplitudes:

<table>
<thead>
<tr>
<th>Amplitude</th>
<th>$\lambda_{J/\psi}$</th>
<th>λ_{Λ}</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_+</td>
<td>0</td>
<td>$1/2$</td>
</tr>
<tr>
<td>a_-</td>
<td>0</td>
<td>$-1/2$</td>
</tr>
<tr>
<td>b_+</td>
<td>-1</td>
<td>$-1/2$</td>
</tr>
<tr>
<td>b_-</td>
<td>1</td>
<td>$1/2$</td>
</tr>
</tbody>
</table>

Normalization condition

$$|a_+|^2 + |a_-|^2 + |b_+|^2 + |b_-|^2 = 1.$$

Parity violating asymmetry parameter

$$\alpha_b = |a_+|^2 - |a_-|^2 + |b_+|^2 - |b_-|^2$$
Full angular PDF1,2,3:

$$w(\Omega, \vec{A}, P) = \frac{1}{(4\pi)^3} \sum_{i=0}^{19} f_{1i}(\vec{A}) f_{2i}(P, \alpha_\Lambda) F_i(\Omega)$$

f_{1i}: bilinear functions of the four helicity amplitudes \vec{A}

f_{2i}: functions of polarization P of Λ_b and decay parameter α_Λ of Λ, where $\alpha_\Lambda = 0.642 \pm 0.013$

F_i: functions of decay angles $\Omega(\theta, \phi, \theta_1, \phi_1, \theta_2, \phi_2)$

<table>
<thead>
<tr>
<th>i</th>
<th>f_{1i}</th>
<th>f_{2i}</th>
<th>F_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$a_+a_+^* + a_-a_-^* + b_+b_+^* + b_-b_-^*$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>$a_+a_+^* - a_-a_-^* + b_+b_+^* - b_-b_-^*$</td>
<td>α_Λ</td>
<td>$\cos \theta_1$</td>
</tr>
<tr>
<td>4</td>
<td>$-a_+a_+^* - a_-a_-^* + b_+b_+^* + b_-b_-^*$</td>
<td>1</td>
<td>$\frac{1}{2} \left(3 \cos^2 \theta_2 - 1 \right)$</td>
</tr>
<tr>
<td>6</td>
<td>$-a_+a_+^* + a_-a_-^* - b_+b_+^* + b_-b_-^*$</td>
<td>α_Λ</td>
<td>$\frac{1}{2} \left(3 \cos^2 \theta_2 - 1 \right) \cos \theta_1$</td>
</tr>
<tr>
<td>18</td>
<td>$3/\sqrt{2} \text{Re}(b_-a_-^* - a_+b_+^*)$</td>
<td>α_Λ</td>
<td>$\sin \theta_1 \sin \theta_2 \cos \theta_2 \cos(\phi_1 + \phi_2)$</td>
</tr>
<tr>
<td>19</td>
<td>$-3/\sqrt{2} \text{Im}(b_-a_-^* - a_+b_+^*)$</td>
<td>α_Λ</td>
<td>$\sin \theta_1 \sin \theta_2 \cos \theta_2 \sin(\phi_1 + \phi_2)$</td>
</tr>
</tbody>
</table>

Parity violation in the decay $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$

- 4.9 fb$^{-1}$ of 2011 data at $\sqrt{s} = 7$ TeV collected with topological J/ψ trigger
- Λ_b^0 reconstructed through cascade decay topology $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$ fit (with $J/\psi \rightarrow \mu^+\mu^-$ and $\Lambda^0 \rightarrow p\pi^-$)
- Selection results

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{sig}</td>
<td>1400 ± 50</td>
<td>1240 ± 40</td>
</tr>
<tr>
<td>N_{Comb}</td>
<td>1090 ± 80</td>
<td>234 ± 16</td>
</tr>
<tr>
<td>$N_{B_0^d}$</td>
<td>210 ± 90</td>
<td>73 ± 30</td>
</tr>
</tbody>
</table>

- Parameter extraction

α_b and helicity amplitude parameters can be found by solving:

$$\langle F_i \rangle_{\text{expected}} = \langle F_i \rangle, \quad \text{for } i = 2, 4, 6, 18, \text{ and } 19$$

Imaginary exact solutions were found. χ^2 minimization fit is used to constraint the helicity amplitude parameters to real values that are statistically closest to the exact solution:

$$\chi^2 = \sum_i \sum_j (\langle F_i \rangle_{\exp} - \langle F_i \rangle)V_{ij}^{-1}(\langle F_j \rangle_{\exp} - \langle F_j \rangle), \quad \text{for } i, j = 2, 4, 6, 18, 19$$

where V_{ij} is the covariance matrix of measured $\langle F_i \rangle$, and $\langle F_i \rangle_{\exp}$ is evaluated from models including detector effects.
Fit results

- The weighted MC and the background distributions of F_i variables are added and compared with data.
- The background is estimated by adding the left and right sidebands.
- Main systematics came from detector effect estimation & background contribution.

arXiv:1404.1071
Parity violation in decay $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$

Results

$$\alpha_b = 0.30 \pm 0.16(\text{stat}) \pm 0.06(\text{syst})$$

$$|a_+| = 0.17^{+0.12}_{-0.17}(\text{stat}) \pm 0.09(\text{syst}),$$

$$|a_-| = 0.59^{+0.06}_{-0.07}(\text{stat}) \pm 0.03(\text{syst}),$$

$$|b_+| = 0.79^{+0.04}_{-0.05}(\text{stat}) \pm 0.02(\text{syst}),$$

$$|b_-| = 0.08^{+0.13}_{-0.08}(\text{stat}) \pm 0.06(\text{syst}).$$

Λ^0 hyperons are more likely to carry a negative helicity

Consistent with the latest LHCb result1

$$\alpha_b = 0.05 \pm 0.17 \pm 0.07$$

Results deviated from two theoretical predictions

$pQCD^2$: $-(0.14\sim0.17)$ at 2.6 s.d.

$HQET^3,4$: 0.78 at 2.8 s.d.

Analysis using 2012 data is ongoing

CP violation in $B_s^0 \rightarrow J/\psi \phi$ (Brief summary)

- Small theoretical uncertainty → well predicted in the SM
- New particles can contribute to $B_s - B_s$ box diagrams and significantly modify the SM prediction
- Update to previous measurement using flavor tagging
- 4.9 fb$^{-1}$ data collected in 2011 with topological J/ψ trigger is used
 - Signal region defined to retain 99.8% of J/ψ candidates (see backup slides)
 - An unbinned maximum likelihood fit (MLF) is performed on the selected events to extract decay parameters
 - Tag information is used in the MLF

SM prediction

$\phi_s = -2\beta_s = -0.0368 \pm 0.0018$ rad

where $\beta_s = \text{arg}[-(V_{ts}V_{tb}^{*})/(V_{cs}V_{cb}^{*})]$

$\Delta\Gamma_s = \Gamma_L - \Gamma_H = 0.087 \pm 0.021$ ps$^{-1}$

Results

$\phi_s = 0.12 \pm 0.25$ (stat.) ± 0.11 (syst.) rad

$\Delta\Gamma_s = 0.053 \pm 0.021$ (stat.) ± 0.009 (syst.) ps$^{-1}$

Results are consistent with CDF2, D03 and LHCb4

References:

Rare decay of $B_s^0 \rightarrow \mu^+ \mu^-$ (Brief summary)

- Flavor changing neutral current highly suppressed in SM
- Of particular interest in search of new physics, complementary to direct search for physics beyond the SM

- 4.9 fb$^{-1}$ data collected in 2011 by the ATLAS detector is used
- Update to previous result using 2.4 fb$^{-1}$ data
 - μ: $p_T > 4$ GeV and $|\eta| < 2.5$
 - B_s: $p_T > 8$ GeV and $|\eta| < 2.5$
 - $\mu\mu$: $4.0 < m(\mu\mu) < 8.5$ GeV and $\chi^2/n.d.f. < 2.0$
 - Signal Region: [5.066, 5.666] GeV
 - 390K B_s candidates were selected

- Decay $B^\pm \rightarrow J/\psi K^\pm \rightarrow \mu^+ \mu^- K^\pm$ used as reference channel for normalization of integrated luminosity, acceptance and efficiency

$$BR(B_s^0 \rightarrow \mu^+ \mu^-) = BR(B^\pm \rightarrow J/\psi K^\pm \rightarrow \mu^+ \mu^- K^\pm) \times \frac{f_{B_s}}{f_B} \times \frac{N_{\mu^+ \mu^-}}{N_{J/\psi K^\pm}} \times \frac{A_{J/\psi K^\pm}}{A_{\mu^+ \mu^-}} \times \frac{\epsilon_{J/\psi K^\pm}}{\epsilon_{\mu^+ \mu^-}}$$

- Main systematics came from PDG branching fractions and acceptance x efficiency ratio between the rare decay and reference channel
Rare decay of $B_s^0 \rightarrow \mu^+ \mu^-$ (Brief summary)

Main backgrounds:
- Combinatorial bkg $b \rightarrow \mu^+ \mu^- X$
- Resonant bkg due to B-hadron decay with 1 or 2 hadrons misidentified as muon

Signal selection optimization:
- Performed to select best performing BDTs and final selection cuts in the BDT output variables and invariant mass window for best sensitivity to the signal
- By maximizing estimator of separation power: $P = \frac{\varepsilon}{1 + \sqrt{B}}$, where ε is the signal efficiency and B is the number of bkg events

$BR(B_s^0 \rightarrow \mu^+ \mu^-)$ branching fraction
- SM prediction1 $(3.56 \pm 0.30) \times 10^{-9}$
- LHCb result2 $(2.9 \pm 1.1) \times 10^{-9}$
- CMS result3 $(3.0 \pm 1.0) \times 10^{-9}$

Results
- Observed limit is set to be $< 15 \times 10^{-9}$ at 95% CL
- compatible with expected limits at $< 16 \pm 7 \times 10^{-9}$ at 95% CL

ATLAS-CONF-2013-076
Summary and outlook

- Excellent muon identification and measurement allow ATLAS to study a wide range of B-physics topics at high energy which are out of reach of B factories.

- **Parity violation** in decay $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$ result consistent with LHCb result, which lies between two theoretical predictions (pQCD & HQET). Updates with 2012 data ongoing.

- **Update on CP violation** measurement in $B_s \rightarrow J/\psi \phi$ with flavor tagging consistent with SM predictions.

- **Improved upper limits set on rare decay** $B_s^0 \rightarrow \mu^+ \mu^-$ consistent with expected values. Update with 2012 data needed to obtain a comparable result with other experiments.

- More public results available on [ATLAS B-physics twiki page](#).

- More results from dedicated analyses using 2012 data are ongoing.
More B-physics public results...

ATLAS EXPERIMENT - Public Results

B-physics public results

- Publications
- CONF notes
- PUB notes
- Stand-alone plots
- CSC B-physics chapter
- Daily updated table...

Publications

Publications appearing in or submitted to peer-reviewed journals are listed below.

<table>
<thead>
<tr>
<th>Short Title</th>
<th>Int L</th>
<th>Journal</th>
<th>Preprint</th>
<th>Plots</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEW Associated production of prompt J/µ mesons and W boson in at (\sqrt{s} = 7 \text{ TeV})</td>
<td>4.6 fb-1</td>
<td>To be submitted to JHEP</td>
<td>arXiv:1401.2831</td>
<td>Link</td>
</tr>
<tr>
<td>NEW Production cross section of B⁺ at (\sqrt{s} = 7 \text{ TeV})</td>
<td>2.4 fb-1</td>
<td>JHEP.10 (2013) 042</td>
<td>arXiv:1307.0126v2</td>
<td>Link</td>
</tr>
<tr>
<td>(\phi_b) and (\Delta \Gamma_b) from time dependent angular analysis of (b \to \phi \rightarrow J/\mu \phi)</td>
<td>4.9 fb-1</td>
<td>JHEP.12 (2012) 072</td>
<td>arXiv:1208.0572</td>
<td>Link</td>
</tr>
<tr>
<td>Search for the decay (B_\phi \rightarrow \mu \mu)</td>
<td>2.4 fb-1</td>
<td>Phys. Lett. B713 (2012) 180-196</td>
<td>arXiv:1204.0735</td>
<td>Link</td>
</tr>
<tr>
<td>Observation of a new (X_0) state in radiative transitions to Y(1S) and Y(2S)</td>
<td>4.4 fb-1</td>
<td>Phys. Rev. Lett. 108 (2012) 152001</td>
<td>arXiv:1112.5154</td>
<td>Link</td>
</tr>
</tbody>
</table>

Analyses performed within other ATLAS Physics Groups:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/BPhysPublicResults
THANK YOU
BACK UP SLIDES
The ATLAS experiment at LHC

ATLAS is a general purpose detector, designed for a wide range of physics scenario (SM, Higgs, SUSY, BSM, etc.)
\[
W(\Omega, \vec{A}, P) = \frac{1}{(4\pi)^3} \sum_{i=0}^{19} f_{1i}(\vec{A})f_{2i}(P, \alpha_L)F_i(\Omega)
\]

<table>
<thead>
<tr>
<th>(i)</th>
<th>(f_{1i})</th>
<th>(f_{2i})</th>
<th>(F_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(a_+ a_^ + a_- a_^ + b_+ b_^ + b_- b_^)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>(a_+ a_^ - a_- a_^ + b_+ b_^ - b_- b_^)</td>
<td>(P)</td>
<td>(\cos \theta)</td>
</tr>
<tr>
<td>2</td>
<td>(a_+ a_^ - a_- a_^ - b_+ b_^ + b_- b_^)</td>
<td>(\alpha_L)</td>
<td>(\cos \theta_1)</td>
</tr>
<tr>
<td>3</td>
<td>(a_+ a_^ + a_- a_^ - b_+ b_^ - b_- b_^)</td>
<td>(P\alpha_L)</td>
<td>(\cos \theta \cos \theta_1)</td>
</tr>
<tr>
<td>4</td>
<td>(-a_+ a_^ - a_- a_^ + \frac{1}{2} b_+ b_^ + \frac{1}{2} b_- b_^)</td>
<td>1</td>
<td>(\frac{1}{2} (3 \cos^2 \theta_2 - 1))</td>
</tr>
<tr>
<td>5</td>
<td>(-a_+ a_^ + a_- a_^ + \frac{1}{2} b_+ b_^ - \frac{1}{2} b_- b_^)</td>
<td>(P)</td>
<td>(\frac{1}{2} (3 \cos^2 \theta_2 - 1) \cos \theta)</td>
</tr>
<tr>
<td>6</td>
<td>(-a_+ a_^ + a_- a_^ - \frac{1}{2} b_+ b_^ + \frac{1}{2} b_- b_^)</td>
<td>(\alpha_L)</td>
<td>(\frac{1}{2} (3 \cos^2 \theta_2 - 1) \cos \theta_1)</td>
</tr>
<tr>
<td>7</td>
<td>(-a_+ a_^ - a_- a_^ - \frac{1}{2} b_+ b_^ - \frac{1}{2} b_- b_^)</td>
<td>(P\alpha_L)</td>
<td>(\frac{1}{2} (3 \cos^2 \theta_2 - 1) \cos \theta \cos \theta_1)</td>
</tr>
<tr>
<td>8</td>
<td>(-3 \text{Re}(a_+ a_^))</td>
<td>(P\alpha_L)</td>
<td>(\sin \theta \sin \theta_1 \sin^2 \theta_2 \cos \phi_1)</td>
</tr>
<tr>
<td>9</td>
<td>(3 \text{Im}(a_+ a_^))</td>
<td>(P\alpha_L)</td>
<td>(\sin \theta \sin \theta_1 \sin^2 \theta_2 \sin \phi_1)</td>
</tr>
<tr>
<td>10</td>
<td>(-\frac{3}{2} \text{Re}(b_+ b_^))</td>
<td>(P\alpha_L)</td>
<td>(\sin \theta \sin \theta_1 \sin^2 \theta_2 \cos (\phi_1 + 2 \phi_2))</td>
</tr>
<tr>
<td>11</td>
<td>(\frac{3}{2} \text{Im}(b_+ b_^))</td>
<td>(P\alpha_L)</td>
<td>(\sin \theta \sin \theta_1 \sin^2 \theta_2 \sin (\phi_1 + 2 \phi_2))</td>
</tr>
<tr>
<td>12</td>
<td>(-\frac{3}{2} \text{Re}(b_- a_^ + a_- b_^))</td>
<td>(P\alpha_L)</td>
<td>(\sin \theta \cos \theta_1 \sin \theta_2 \cos \theta_2 \cos \phi_2)</td>
</tr>
<tr>
<td>13</td>
<td>(\frac{1}{\sqrt{3}} \text{Im}(b_- a_^ + a_- b_^))</td>
<td>(P\alpha_L)</td>
<td>(\sin \theta \cos \theta_1 \sin \theta_2 \cos \theta_2 \sin \phi_2)</td>
</tr>
<tr>
<td>14</td>
<td>(-\frac{1}{\sqrt{2}} \text{Re}(b_- a_^ + a_+ b_^))</td>
<td>(P\alpha_L)</td>
<td>(\cos \theta \sin \theta_1 \sin \theta_2 \cos \theta_2 \cos (\phi_1 + \phi_2))</td>
</tr>
<tr>
<td>15</td>
<td>(\frac{1}{\sqrt{2}} \text{Im}(b_- a_^ + a_+ b_^))</td>
<td>(P\alpha_L)</td>
<td>(\cos \theta \sin \theta_1 \sin \theta_2 \cos \theta_2 \sin (\phi_1 + \phi_2))</td>
</tr>
<tr>
<td>16</td>
<td>(\frac{3}{\sqrt{3}} \text{Re}(a_- b_^ - b_- a_^))</td>
<td>(P)</td>
<td>(\sin \theta \sin \theta_2 \cos \theta_2 \cos \phi_2)</td>
</tr>
<tr>
<td>17</td>
<td>(-\frac{3}{\sqrt{2}} \text{Im}(a_- b_^ - b_- a_^))</td>
<td>(P)</td>
<td>(\sin \theta \sin \theta_2 \cos \theta_2 \sin \phi_2)</td>
</tr>
<tr>
<td>18</td>
<td>(\frac{3}{\sqrt{2}} \text{Re}(b_- a_^ - a_+ b_^))</td>
<td>(\alpha_L)</td>
<td>(\sin \theta_1 \sin \theta_2 \cos \theta_2 \cos (\phi_1 + \phi_2))</td>
</tr>
<tr>
<td>19</td>
<td>(-\frac{3}{\sqrt{2}} \text{Im}(b_- a_^ - a_+ b_^))</td>
<td>(\alpha_L)</td>
<td>(\sin \theta_1 \sin \theta_2 \cos \theta_2 \sin (\phi_1 + \phi_2))</td>
</tr>
</tbody>
</table>
CP violation in $B_s^0 \rightarrow J/\psi \phi$

Event selection

- $J/\psi \rightarrow \mu^+ \mu^-$ candidates
 - at least one pair of oppositely charged muon candidates
 - pair of muon tracks refitted to a common vertex
 - χ^2/d.o.f. < 10
 - $2.959 < m(\mu^+ \mu^-) < 3.229$ GeV for both muons with $|\text{eta}| < 1.05$
 - $2.913 < m(\mu^+ \mu^-) < 3.273$ GeV for one muon with $1.05 < |\text{eta}| < 2.5$
 - $2.852 < m(\mu^+ \mu^-) < 3.332$ GeV for both muons with $1.05 < |\text{eta}| < 2.5$

- $\phi \rightarrow K^+K^-$ candidates
 - reconstructed from oppositely charged tracks not identified as muon
 - $p_T > 0.5$ GeV
 - $|\text{eta}| < 2.5$

- $B_s^0 \rightarrow J/\psi \phi$ candidates
 - reconstructed by fitting four tracks each with
 - at least 1 hit in pixel detector
 - at least 4 hits silicon strip detector
 - χ^2/d.o.f. < 3
 - fitted $p_T(K^+/K^-) > 1$ GeV
 - $1.0085 < m(K^+K^-) < 1.0305$ GeV

ATLAS-CONF-2013-039

Hok-Chuen Cheng (Michigan) Pheno2014 20
\section*{CP violation in $B_s^0 \rightarrow J/\psi \phi$}

\subsection*{Likelihood function}

An unbinned maximum likelihood fit is performed on the selected events to extract the parameters of the $B_s^0 \rightarrow J/\psi (\mu^+ \mu^-) \phi (K^+ K^-)$ decay. The fit uses information about the reconstructed mass m, the measured proper decay time t, the measured mass and proper decay time uncertainties σ_m and σ_t, the tag probability, and the transversity angles Ω of each $B_s^0 \rightarrow J/\psi \phi$ decay candidate. There are three transversity angles; $\Omega = (\theta_T, \psi_T, \phi_T)$ and these are defined in section 5.1.

The likelihood function is defined as a combination of the signal and background probability density functions as follows:

\begin{equation}
\ln \mathcal{L} = \sum_{i=1}^{N} \left\{ w_i \ln (f_s \cdot \mathcal{F}_s(m_i, t_i, \Omega_i)) + f_s \cdot f_{B^0} \cdot \mathcal{F}_{B^0}(m_i, t_i, \Omega_i) \\
+ (1 - f_s \cdot (1 + f_{B^0})) \mathcal{F}_{bkg}(m_i, t_i, \Omega_i) \right\}
\end{equation}

where N is the number of selected candidates, w_i is a weighting factor to account for the trigger efficiency, f_s is the fraction of signal candidates, f_{B^0} is the fraction of peaking B^0 meson background events calculated relative to the number of signal events; this parameter is fixed in the likelihood fit. The mass m_i, the proper decay time t_i and the decay angles Ω_i are the values measured from the data for each event i. \mathcal{F}_s, \mathcal{F}_{B^0} and \mathcal{F}_{bkg} are the probability density functions (PDF) modelling the signal, the specific B^0 background and the other background distributions, respectively. A detailed description of the
CP violation in $B_s^0 \rightarrow J/\psi \phi$

\[\phi_s = 0.12 \pm 0.25 \text{ (stat.)} \pm 0.11 \text{ (syst.) rad} \]

\[\Delta \Gamma_s = 0.053 \pm 0.021 \text{ (stat.)} \pm 0.009 \text{ (syst.) ps}^{-1} \]

\[\Gamma_s = 0.677 \pm 0.007 \text{ (stat.)} \pm 0.003 \text{ (syst.) ps}^{-1} \]

\[|A_0(0)|^2 = 0.529 \pm 0.006 \text{ (stat.)} \pm 0.011 \text{ (syst.)} \]

\[|A_{\parallel}(0)|^2 = 0.220 \pm 0.008 \text{ (stat.)} \pm 0.009 \text{ (syst.)} \]

\[\delta_{\perp} = 3.89 \pm 0.46 \text{ (stat.)} \pm 0.13 \text{ (syst.) rad} \]

Full results:

Table 7: Summary of systematic uncertainties assigned to parameters of interest.

| | ϕ_s (rad) | $\Delta \Gamma_s$ (ps$^{-1}$) | Γ_s (ps$^{-1}$) | $|A_{\parallel}(0)|^2$ | $|A_0(0)|^2$ | $|A_S(0)|^2$ | δ_{\perp} (rad) | δ_{\parallel} (rad) | $\delta_{\perp} - \delta_S$ (rad) |
|------------------|----------------|-------------------------------|------------------------|-----------------------|-------------|----------------|------------------------|-------------------------------|---------------------------------|
| **ID alignment** | $<10^{-2}$ | $<10^{-3}$ | $<10^{-3}$ | $<10^{-3}$ | $<10^{-3}$ | - | $<10^{-2}$ | $<10^{-2}$ | - |
| **Trigger efficiency** | $<10^{-2}$ | $<10^{-3}$ | 0.002 | $<10^{-3}$ | $<10^{-3}$ | $<10^{-2}$ | $<10^{-2}$ | $<10^{-2}$ | $<10^{-2}$ |
| **B_d^0 contribution** | 0.03 | 0.001 | $<10^{-3}$ | $<10^{-3}$ | 0.005 | 0.001 | 0.02 | $<10^{-2}$ | $<10^{-2}$ |
| **Tagging** | 0.10 | 0.001 | $<10^{-3}$ | $<10^{-3}$ | 0.002 | 0.05 | $<10^{-2}$ | $<10^{-2}$ | $<10^{-2}$ |
| **Models:** | | | | | | | | | |
| **default fit** | $<10^{-2}$ | 0.002 | $<10^{-3}$ | 0.003 | 0.002 | 0.006 | 0.07 | 0.01 | 0.01 |
| **signal mass** | $<10^{-2}$ | 0.001 | $<10^{-3}$ | 0.001 | 0.001 | 0.002 | 0.06 | 0.02 | 0.02 |
| **background mass** | $<10^{-2}$ | 0.001 | 0.001 | $<10^{-3}$ | 0.002 | 0.004 | 0.02 | 0.02 | 0.02 |
| **resolution** | 0.02 | $<10^{-3}$ | 0.001 | $<10^{-3}$ | 0.002 | 0.04 | 0.02 | 0.02 | 0.02 |
| **background time** | 0.01 | 0.001 | $<10^{-3}$ | 0.001 | 0.002 | 0.01 | 0.02 | 0.02 | 0.02 |
| **background angles** | 0.02 | 0.008 | 0.002 | 0.008 | 0.009 | 0.027 | 0.06 | 0.07 | 0.03 |
| **Total** | 0.11 | 0.009 | 0.003 | 0.009 | 0.011 | 0.028 | 0.13 | 0.09 | 0.04 |
Rare decay of $B_s^0 \to \mu^+ \mu^-$

Discriminative variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_{xy}</td>
<td>Scalar product in the transverse plane of vectors</td>
<td>1</td>
</tr>
<tr>
<td>$I_{0.7}$ isolation</td>
<td>Ratio of $</td>
<td>\not{p}B_T</td>
</tr>
<tr>
<td>$</td>
<td>\alpha_{2d}</td>
<td>$</td>
</tr>
<tr>
<td>$p_{L \text{ min}}$</td>
<td>Minimum momentum of the two muon candidates along the B direction</td>
<td>4</td>
</tr>
<tr>
<td>p_{TB}</td>
<td>B transverse momentum</td>
<td>5</td>
</tr>
<tr>
<td>ct significance</td>
<td>Proper decay length divided by its uncertainty</td>
<td>6</td>
</tr>
<tr>
<td>χ^2_{z}, χ^2_{xy}</td>
<td>Significance of the separation between production (PV) and decay vertex (SV)</td>
<td>7</td>
</tr>
<tr>
<td>$</td>
<td>D_{xy}</td>
<td>_{\text{min}},</td>
</tr>
<tr>
<td>ΔR</td>
<td>R-parameter in two dimensions, $R=\sqrt{\Delta \eta^2 + \Delta \phi^2}$</td>
<td>9</td>
</tr>
<tr>
<td>$</td>
<td>d0</td>
<td>_{\text{max}},</td>
</tr>
</tbody>
</table>