Properties of the Top Quark Phenomenology 2014

Olga Bessidskaia Bylund

Stockholm University

On behalf of the ATLAS Top Working Group

6th of May 2014

- Motivation
- Top mass
- Top charge
- Polarization
- Spin correlation
- Charge asymmetry

The top quark

- Heaviest elementary particle at $\approx 173 \, {\rm GeV}$. Discovered 1995.
- Lifetime: $\tau = 3 \cdot 10^{-25}$ seconds, decays without hadronizing.
- Branching ratio $Br(t \rightarrow W + b) \approx 1$.
- Top properties enter as important parameters in many BSM theories.
- High precision measurments are important to test SM and BSM.
- LHC acts as a **top factory**, producing *tī* pairs through gluon fusion.
- Final states with $t\bar{t}$, leptons and jets were used for the measurements below.

Top mass

- Test internal consistency of the SM and BSM theories.
- Constrain masses of undiscovered particles in BSM scenarios.
- Selection: lepton+jets from $tar{t} o bar{b} l
 u q_1ar{q}_2$.
- $\sqrt{s} = 7 \text{ TeV}$ at 1.04 fb⁻¹, 2011 data.
- Measure invariant mass of decay products, determine top mass using a template method with a likelihood fit.
- MC generated for six different top masses, between 160 and 190 GeV.
- 2d analysis, optimizing top mass and the JSF simultaneously.

Eur.Phys.J. C72 (2012) 2046, arXiv 1203.5755

Top quark mass (2)

Results

- $m_t = 174.5 \pm 0.6 \pm 2.3 \, \text{GeV}.$
- Statistically as precise as Tevatron combined measurement of $m_t = 173.2 \pm 0.6_{\text{stat}} \pm 0.8_{\text{syst}} \text{ GeV}$, larger systematic uncertainty.
- Largest systematic uncertainties: JES and QCD modelling.

Top quark mass: combination

- First combination of LHC (ATLAS+CMS) and Tevatron (CDF+D0) for the top quark mass.
- Final states: $t\bar{t} \rightarrow \text{lepton}+\text{jets}, t\bar{t} \rightarrow \text{dilepton}, t\bar{t} \rightarrow \text{jets}, t\bar{t} \rightarrow E_{T}^{\text{miss}}$.
- Preliminary **results**: $m_t = 173.34 \pm 0.27_{\text{stat}} \pm 0.71_{\text{syst}} \text{ GeV}.$

ATLAS-CONF-2014-008

.⊒ . ►

Mass difference between t and \overline{t}

- First ATLAS measurement of $\Delta m = m(t) m(\bar{t})$.
- By **CPT invariance**, $\Delta m = 0$, condition for a local field theory.
- Selection: lepton+jets from a $t\bar{t}$ decay.
- 15 samples simulated with Δm : [-15, 15] GeV, $\frac{m_t + m_{\tilde{t}}}{2} = 172.5$ GeV.
- Results: $\Delta m = 0.67 \pm 0.61_{\mathrm{stat}} \pm 0.41_{\mathrm{syst}} \,\mathrm{GeV}$, consistent with SM.

Physics Letters B 728C (2014), pp. 363-379, arXiv 1310.6527

Top Quark Charge

- Test whether the charge Q of the top quark is 2/3 e (SM) or -4/3 e.
- Data taken at 2.05 fb^{-1} and $\sqrt{s} = 7 \mathrm{~TeV}$.
- Selection: $t\bar{t}$ with a single charged lepton, $t\bar{t} \rightarrow l^{\pm}\nu jjbb$.
- SM top can decay to I^+ , $b^{-1/3}$, an exotic T to I^- , $b^{-1/3}$.
- Results: $Q = 0.64 \pm 0.02_{\text{stat}} \pm 0.08_{\text{syst}} e$. Q = -4/3 e excluded at 8σ .

JHEP11(2013)031, arXiv 1307.4568

- CP conservation of the strong force results in negligible longtitudional polarization of $t\bar{t}$ pairs. Small contribution from weak processes.
- Some BSM theories predict enhanced polarization.
- Measure spin state using angular distributions of the decay products.
- Data taken at $\sqrt{s} = 7 \text{ TeV}$, $L = 4.66 \text{ fb}^{-1}$.
- Final states: one or two isolated leptons + jets.

Phys. Rev. Lett 111, 232002 (2013), arXiv: 1307.6511

Top polarization (2)

- Measure $\alpha_I P$: leptonic spin analyzing power x top polarization.
- $\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta_1\mathrm{d}\cos\theta_2} = \frac{1}{4} (1 + \alpha_1 P_1 \cos\theta_1 + \alpha_2 P_2 \cos\theta_2 C \cos\theta_1 \cos\theta_2)$
- Two measurements under the hyptoheses: polarization caused by CP conserving or maximally CP violating processes.
- $\alpha_I P_{\text{CPC}} = -0.035 \pm 0.014 \pm 0.037$, $\alpha_I P_{\text{CPV}} = 0.020 \pm 0.016^{+0.013}_{-0.017}$.
- Agreement with SM prediction: top polarization compatible with zero.

- The spin correlation in tt pairs is measured.
- Measurement at $L = 2.1 \, {\rm fb}^{-1}$, $\sqrt{s} = 7 \, {\rm TeV}$.
- Selection: 2 leptons, 2 jets and missing E_T , targeting $t\bar{t} \rightarrow W^+W^-b\bar{b} \rightarrow l^+\nu l^-\bar{\nu}b\bar{b}$.
- At low invariant mass, $t\bar{t}$ is produced from gluons with like helicity
- Predicted spin correlation in $t\bar{t}$ pairs.
- No top hadronization spin transferred to decay products, measured in l⁺l⁻.

Phys. Rev. Lett. 108, 212001 (2012), arXiv:1203.4081

Spin correlation (2)

• Spin correlation:

$$A = (N_{\uparrow\uparrow, \downarrow\downarrow} - N_{\uparrow\downarrow, \downarrow\uparrow})/N_{tot}$$

- Two hypotheses: A_{SM} , A = 0.
- BSM process that could reduce spin correlation: t → H⁺b.
- A is extracted from angular distribution $\Delta \phi$ of lepton pairs using fits to templates.
- Correlation measure f, with f = 1 being the SM prediction.

Results

- $f_{SM} = 1.30 \pm 0.14_{stat}$, $A_{\text{helicity}} = 0.40^{+0.09}_{-0.08}$.
- Results are compatible with SM $A_{helicity}^{SM} = 0.31$.
- 0 spin correlation hypothesis excluded at 5.1σ .

- Motivation: test QCD. Probe BSM processes with anomalous vector or axial-vector couplings.
- SM asymmetry sources: interference of gluon emission state at NLO in $q\bar{q}g \rightarrow t\bar{t}g$ + interference of tree and box diagrams.
- Shown in pseudorapidity η distribution of $t\bar{t}$.

The measurement

- Data taken at $\sqrt{s} = 7 \text{ TeV}$, $L = 4.7 \text{ fb}^{-1}$.
- Selection: 1 lepton, ≥4 jets, one b-tag and large missing transverse momentum.

JHEP02(2014)107, arXiv 1311.6724

Charge asymmetry (2)

- SM prediction at the LHC: $AC_{SM} = 0.0123 \pm 0.0005$.
- Results: $AC = 0.006 \pm 0.010$, consistent with the SM prediction.

• Combination of ATLAS+CMS. Preliminary results: $0.005 \pm 0.007 \pm 0.006$, in agreement with the SM.

- Top properties have been measured at ATLAS in $\sqrt{s} = 7 {
 m TeV}$ data.
- Measurements of the top mass, charge and polarization were presented as well as spin correlation in $t\bar{t}$ pairs the charge asymmetry and the mass difference between t and \bar{t} .
- No inconsistencies with the SM were found.
- Several BSM scenarios excluded, such as Q = -4/3e and 0 spin correlation i $t\bar{t}$ pairs.
- The Standard Model prevails.