

New Directions in Dark-Matter Complementarity

Brooks Thomas Carleton University

Based on work done in collaboration with Keith Dienes, Jason Kumar, and David Yaylali [arXiv:1405.xxxx]

Complementarity: The Standard Picture

The Underlying Principle:

A single operator which couples DM particles to SM particles generically contributes to a variety of different physical processes.

Two facets of complementarity:

- <u>Coverage</u>: Different detection channels are sensitive in different regions of the parameter space of dark-matter models.
- <u>Correlations</u>: Observing signals in multiple channels with regions of that parameter space in which sensitivities overlap.

Complementarity: A More General Picture

In <u>multi-component</u> theories of dark matter, additional physical processes are possible. These include...

Dark-matter decay

• Heavier χ_i can decay into lighter ones even in the case in which the lightest χ_i is stable due to a symmetry.

Inelastic scattering of dark matter off with atomic nuclei

- <u>Upscattering</u> of a ligher χ_i into a heavier χ_j (prototypical inelastic DM) [Hall, Moroi, Murayama, '97; 'Weiner, Tucker-Smith, '01]
- **Downscattering** of a heavier, metastable χ_i into a lighter χ_j ("exothermic" DM). [Finkbein er, Slatyer, Weiner, Yavin, '09; Batell, Pospelov, Ritz, '09; Graham, Harnik, Rajendran, Saraswat, '11]

<u>Asymmetric</u> pair-production of χ_i and χ_j at colliders

<u>Coannihilation</u> of χ_i and χ_i (both in the early universe and today)

The Fundamental Interactions

At the energy scales |q| ≤ O(100 MeV) relevant for direct detection, interactions between the dark and visible sectors in a wide variety of theories can be modeled as <u>effective contact interactions</u>.
 [See, e.g., Goodman, Ibe, Rajaraman, Shepherd, Tait, Yu '10]

• As an example, consider a dark sector comprising two Dirac fermions χ_1 and χ_2 , with $m_2 > m_1$, whose dominant couplings to the visible sector are to SM quarks:

$$\mathcal{O}_{ij}^{(XY)} = \sum_{q=u,d,s,\dots} \frac{c_{qij}^{(XY)}}{\Lambda^2} (\overline{\chi}_i \Gamma^X \chi_j) (\overline{q} \Gamma^Y q)$$

for $i, j = 1, 2$, with $\Gamma = \{1, i\gamma^5, \gamma^\mu, \gamma^\mu \gamma^5, \sigma^{\mu\nu}\}$

Moreover, for purposes of illustration let's focus on the case in which:

- A single operator with i \neq j dominates and $c_{qij}^{(XY)} \approx 0$ for all operators with i = j.
- The majority of the dark matter is in the metastable state $\chi_2 i.e$, $\Omega_{CDM} \approx \Omega_2$.
- The $c_{q_{ij}}^{(XY)}$ are O(1) and flavor-universal up to an overall ratio between up- and down-type quarks.

And define:

$$\Delta m_{12} \equiv m_2 - m_1$$

$$c_{u12}^{(XY)} = \cos\theta , \quad c_{d12}^{(XY)} = \sin\theta$$

Inelastic Scattering and Direct Detection

- In multi-component scenarios, a variety of processes can contribute to the overall scattering rate at direct-detection experiments:
- Inelastic scattering can have a significant impact on direct detection signals when Δm_{12} is similar the range of recoil energies to which these experiments are sensitive:

 $1 \text{ keV} \lesssim E_R \lesssim 100 \text{ keV}$

 $\Delta m = -1 \text{ keV}$

 $\Delta m = -10 \text{ keV}$

 $\Delta m = -100 \text{ keV}$ $\Delta m = 100 \text{ keV}$

 $\Delta m = 0$

 $\Delta m = 1 \text{ keV}$

 $\Delta m = 10 \text{ keV}$

 10^{4}

1000

Elastic scattering, upscattering, and downscattering have their own <u>distinctive kinematics</u> and contribute to the total recoil-energy spectrum in different ways.

Decays and Indirect Detection

- In the Δm_{12} regime relevant for inelastic DM scattering off nuclei, only photons and neutrinos are accessible in $\chi_2 \rightarrow \chi_1$ + SM decays.
- Even when χ_1 and χ_2 couple primarily to quarks, contributions to the decay width of χ_2 generically arise from diagrams involving virtual quarks/hadrons:

These contributions can be evaluated, e.g., in Chiral Perturbation theory.

• For example, for scalar (SS) and axial-vector (AA) interactions, we find:

Spectrum peaked in the X-ray for $\Delta m_{12} \sim O(1-100 \text{ keV})$. Widths constrained by diffuse X-ray data from COMPTEL, HEAO-1, etc.

Interplay Between Detection Channels: Results Preliminar (Spin-dependent) (Spin-independent) 10^{-3} 10^{-3} OUPP-4 _Z-7.2 10^{-4} PICO-250L 10^{-4} Δm_{12} [GeV] Δm_{12} [GeV] 10^{-5} 10^{-5} SS AA $\theta = -\pi/4$ $\theta = -\pi/4$ $m_2 = 100 \text{ GeV}$ $m_2 = 100 \text{ GeV}$ 10^{-6} 10^{-6} 10^{4} 10^{2} 10^{3} 10^{5} 10^{6} 10 10^{1} 10^{2} 10^{3} 10^{4} 10^{5} 10^{6} Λ [GeV] Λ [GeV]

- Current direct-detection limits
- Diffuse XRB limit (HEAO-1)
- Diffuse XRB limit (COMPTEL)

- --- ATLAS/CMS monojet limit
- --- ATLAS mono-W/Z limit
- -- Future direct-detection reach

Summary

- In multi-component theories of dark matter, <u>new complementarity</u> <u>relations</u> exist between processes absent in single-component theories.
- In particular, a single interaction between DM and SM particles can contribute to:
 - Inelastic scattering at direct-detection experiments
 Asymmetric dark-matter production at colliders
 Indirect-detection signals due to dark-matter decay
- We have also demonstrated the power of these complementarity relations in covering the parameter space of a toy two-component dark sector.
- In the small-coupling/large-Λ regime, there is significant overlap between the regions excluded by direct- and indirect-detection limits. Together, these complementary probes of the dark sector provide <u>complete</u> <u>coverage of the relevant parameter space</u> in this regime.
- By contrast, in the large-coupling/small- Λ regime, a range of Δm_{12} opens up for which the dark sector escapes detection. Motivates new detection strategies to "fill the gap."

Backup Slides

Inelastic Dark Matter: Scattering Kinematics

