

The Case of Light Neutralino Dark Matter

Zhen Liu with Tao Han and Shufang Su, to appear

Motivation

Particle DM is well-motivated!

We explore DM from **ALL DIRECTIONS** with unprecedented (and growing) precision!

Motivation

Recent results and plans of CDMS, talk by Bernard Sadoulet

Motivation

Collider Searches from Mono-jet, photon, Z, b... mono-everything! Collider indirect probes with model assumed, Higgs precision/Higgcision.

 W^+W^-

T.Han, ZL, A. Natarajan 1303.3040

Collider Searches from Mono-jet, photon, Z, b... mono-everything! Collider indirect probes with model assumed, Higgs precision/Higgcision.

 W^+W^-

T.Han, ZL, A. Natarajan 1303.3040

Direct Collider Searches from Mono-jet, photon, Z, b... monoeverything! Collider indirect probes with model assumed, Higgs precision/Higgcision.

Relic

Z,h,H,

Indirect

Collider

T.Han, ZL, A. Natarajan 1303.3040

Relic Collider Z,h,H, A Indirect Direct

Collider Searches from Mono-jet, photon, Z, b... monoeverything! Collider indirect probes with model assumed, Higgs precision/Higgcision.

Collider Searches from Mono-jet, photon, Z, b... monoeverything! Collider indirect probes with model assumed, Higgs precision/Higgcision.

Neutralino LSP in the NMSSM

Neutralino LSP serves as good DM candidate in Rparity conserving SUSY models

A mixture of Bino, Wino, Higgsino and Singlino

$$\tilde{\chi}_{1}^{0} = N_{11}\tilde{B} + N_{12}\tilde{w}^{3} + N_{13}\tilde{h}_{d} + N_{14}\tilde{h}_{u} + N_{15}\tilde{S}$$

$$M_{\tilde{\chi}^{0}} = \begin{pmatrix} M_{1} & 0 & -g_{1}\frac{v_{d}}{\sqrt{2}} & g_{1}\frac{v_{u}}{\sqrt{2}} & 0 \\ M_{2} & g_{2}\frac{v_{d}}{\sqrt{2}} & -g_{2}\frac{v_{u}}{\sqrt{2}} & 0 \\ 0 & -\mu & -\lambda v_{u} \\ & 0 & -\lambda v_{d} \\ & & 2\frac{\kappa}{\lambda}\mu \end{pmatrix}$$

Higgs Sector in the NMSSM

• Type II Two Higgs Doublet Model plus singlet S

$$\begin{split} W_{\text{NMSSM}} &= Y_u \bar{u} H_u Q + Y_d \bar{d} H_d Q + Y_e \bar{e} H_d L + \lambda S H_u H_d + \frac{1}{3} \kappa S^3 \\ V_{H,Soft} &= m_{H_u}^2 H_u^{\dagger} H_u + m_{H_d}^2 H_d^{\dagger} H_d + M_S^2 |S|^2 + \lambda A_\lambda (H_t^T \epsilon H_d) S + \frac{1}{3} \kappa A_\kappa S^3 + c.c.) \end{split}$$

SSB

$$H_{u} = \begin{pmatrix} H_{u}^{+} \\ H_{u}^{0} \end{pmatrix} v_{u}/\sqrt{2} \qquad H_{d} = \begin{pmatrix} H_{d}^{0} \\ H_{d}^{-} \end{pmatrix} v_{d}/\sqrt{2} \qquad S \rightarrow v_{s}/\sqrt{2} \\ (\mu = \lambda v_{s}/\sqrt{2}) \\ (\mu = \lambda v_{s}/\sqrt{2}) \end{pmatrix}$$

$$u_{u}^{2} + v_{d}^{2} = v^{2} = (246 \text{GeV})^{2} \\ \tan \beta = v_{u}/v_{d} \qquad \text{after EWSB, 7 physical Higgses} \\ CP-\text{even Higgses: H1, H2, H3} \\ CP-\text{odd Higgs: A1, A2} \\ Charged Higgses: H^{\pm} \end{cases}$$

For discussion about Low-mass Higgs states, see our work N.Christensen, T. Han, ZL and S. Su, 1303.2113

Light Neutralino LSP

Light Wino/Higgsino unlikely due to

Underabundant/No light Chargino/Direct Detection Rate High

Bino and Singlino are **pretty inert**

Light Neutralino LSP

Ways out if assuming thermal relic

Collider

Indirect

Relic

Z,h,H,

A

Famous "Funnel" regions to hit the s-channel Direct resonance for the mediator.

Especially near the PQ-limit NMSSM, automatically light CP-odd singlet like Higgs. Dark Light Higgs, P.Drapper, T.Liu, C.Wagner, L-T. Wang and H.Zhang Famous "Co-annihilation" regions to have sfermions in thermal equilibrium help LSP annihilate efficiently. A.Arbey, M.Battaglia and F.Mahmoudi, 1205.2557

Light Neutralino LSP

Ways out if assuming thermal relic

irect

Famous "Funnel" regions to hit the s-char resonance for the mediator.

Especially near the PQ-limit NMSSM, automatically light CP-odd singlet like Higgs. Dark Light Higgs, P.Drapper, T.Liu, C.Wagner, L-T. Wang and H.Zhang Famous "Co-annihilation" regions to have sfermions in thermal equilibrium help LSP annihilate efficiently. A.Arbey, M.Battaglia and F.Mahmoudi, 1205.2557

Finding the Solutions

Using modified NMSSMTools4 Multiple way of scanning:

General

Dedicated

Seeded

Log prior used for several dedicated scans

	General	Sbottom	Stau	H_1, A_1 -funnel
$m_{A_{ m tree}}$	[0,3000]			
aneta	[1,55]			
μ	[100, 500]			
$ A_{\kappa} $	[0,1000]			
λ	[0,1]			[0.01, 0.6]
κ	[0,1]	either $\kappa \in [2, 30]\lambda/(2\mu)$		
$ M_1 $	[0,500]	or $M_1 \in [2, 30]$, or both		
M_{Q3}, M_{U3}	[0,3000]			_
$ A_t $	[0,4000]			
M_{D3}	[0,3000]	[0, 80]	3000	
$ A_b $	[0,4000]		0	
M_{L3}, M_{E3}	[0,3000]	3000	[0,500]	3000
$ A_{\tau} $	[0,4000]	0	[0,2000]	0

Finding the Solutions

- Theoretical constraints such as Vacuum stability.
- Collider Higgs search limits from the LEP, the Tevatron and the LHC.
- LEP, Tevatron and LHC constrains on searches of supersymmetric particles, such as charignos, leptons and squarks;
- 2-σ window of the SM-like Higgs boson mass: 122.7 128.7 GeV (including linearly added estimated theoretical uncertainties of ±2 GeV).
- 2- σ window of the SM-like Higgs bosons cross sections for $\gamma\gamma$, ZZ, W⁺W⁻, $\tau^+\tau^$ and $b\bar{b}$ different production modes.
- Z boson invisible width and hadronic width
- B-physics constrains, including $b \to s\gamma$, $B_s \to \mu^+\mu^-$, $B \to \chi_s\mu^+\mu^-$ and $B^+ \to \tau^+\nu_\tau$, as well as Δm_s , Δm_d , $m_{\eta_b(1S)}$ and $\Upsilon(1S) \to a\gamma$, $h\gamma$.

Red A1/H1-funnel Blue Stau coannhilation Green Sbottom coannihilation Shaded Sbottom excluded by direct detection

Red A1/H1-funnel Blue Stau coannhilation Green Sbottom coannihilation Shaded Sbottom excluded by direct detection

Direct Detection

Indirect Detection

Combined Exclusion from Fermi-LAT from inner galaxy and dwarf galaxies assuming DM annihilate to bottom pair/ tau pair assuming NFW profile Shaded:

Best fit for GeV Gamma Ray Excess for 35 GeV DM into bb.

126 GeV Higgs Boson!

Not much Enhanced Diphoton Stau, sbottom loop does not contribute much in our case as one expected from limits of Br of Higgs.

Exotic decays Up to 30%

May have triggering issue. See discussions by the Exotic Higgs Decay Working Group, 1312.4992

Example: Light h1 properties

Generally singlet-Higgs-like

<10% SM Higgs production rate for most modes for a given mass

Mainly bottom pairs tau pairs.

Decay to LSP pairs kinematically suppressed as well as required by efficient annihilation.

a1 pairs possible

Summary

We discuss

- <40 GeV neutralino DM in the NMSSM (sfermion coannihilation also viable in the MSSM)
- (Speculated) Viable Solutions found for
- a1,h1-funnel
- Stau coannhilation
- Sbottom coannhilation
- Discuss the complementarity of different DM searches; (spin-independent, spin-dependent) direct searches, indirect searches (including Gamma-ray excess)
- Relevant collider signatures discussed/proposed; see more in the paper to come

Thank You!

Thank You! Hope you enjoy Pheno 14

Cindy Cercone, Neil Christensen, Ayres Freitas, Tao Han (chair), Adam Leibovich, Joshua Sayre, Brock Tweedie, Susanne Westhoff Program Advisors: Vernon Barger, Lisa Everett, Kaoru Hagiwara, JoAnne Hewett, Xerxes Tata, Dieter Zeppenfeld

arc supported by the US DOE, NSF, and PETT PACC

Thank You!

Hope you enjoy Pheno 14 and this charming City of Pittsburgh PHENO 2014 May 5-7 2014 University of Pittsburgh PITTsburgh Particle physics, Astrophysics & Cosmology Center http://indico.cern.ch/e/pheno14

"Full Steam Ahead!"

itas, Tao Han (chair), Adam Leibovich, Joshua Sayre, Brock Tweedie, Susa ett, Kaoru Hagiwara, JoAnne Hewett, Xerxes Tata, Dieter Zeppenfeld

(PITT PACC)

the US DOE, NSI and PETT PACC

Showed up in many places

- 1) Resonance
- 2) Co-annihilation⇔ small mass splitting
- 3) Z decoupling

LEP Constrians from monophoton

>81.	.9		<mark>95</mark>
none	m _τ -	26.3	95

2			17 I		
3	ABDALLAH	03M	DLPH	$\Delta m > 15$ GeV, all	θ_{τ}
3	ABDALLAH	03M	DLPH	$\Delta m > m_{\tau}$, all θ_{τ}	
л					

		Selection		
Cut		low ΔM	very low ΔM	ultra low ΔM
hadronic calorimeter energy	<	12 GeV	10 GeV	10 GeV
$E_{BGO} - E_{\gamma}$	<	10 GeV	6 GeV	1 GeV
remaining calorimetric energy	<	12 GeV	8 GeV	6 GeV
muon momentum	Λ	8 GeV	No muon	No muon
P _t track	٨	10 GeV	4 GeV	none
transverse energy imbalance	٧	0.1	0.2	0.3
longitudinal energy imbalance	<	0.85	none	none
number of tracks	<	10	7	5
number of BGO energy clusters	<	15	10	6
isolation angle of the photon	<	160°	none	none

