Charm Mixing and CPV at LHCb

Adam Davis On behalf of the LHCb Collaboration

May 6, 2014

Charm System	LHCb	$D^0 - \overline{D}^0$ Mixing/CPV	Muon Tagged ΔA_{CP}	Conclusions

Outline

Charm System

LHCb

$$D^0 - \overline{D}^0$$
 Mixing/CPV

Muon Tagged ΔA_{CP} NEW!

Conclusions

Mixing in a Nutshell

- Mixing in Neutral Mesons: mass≠flavor eigenstates
- Mass Eigenstates:

$$egin{aligned} |D_{1,2}
angle &= p|D^0
angle \pm q|\overline{D}^0
angle, \ |p|^2 + |q|^2 &= 1 \end{aligned}$$

$$x = \frac{m_2 - m_1}{\Gamma}$$
 $y = \frac{\Gamma_2 - \Gamma_1}{2\Gamma}$, $\Gamma = \frac{\Gamma_1 + \Gamma_2}{2}$

~

3 Types of CPV Direct CPV (Charged and Neutral) $\mathcal{A}_{f} = \langle f | \mathcal{H} | D \rangle, \overline{\mathcal{A}}_{\overline{f}} = \langle \overline{f} | \mathcal{H} | \overline{D} \rangle$ $\left| \left| \frac{\overline{\mathcal{A}}_{\overline{f}}}{\mathcal{A}_{f}} \right| \neq 1 \right|$

CPV in Mixing (Neutral)

$$\left| rac{q}{p} \right|
eq 1$$

Weak Phase:
$$\phi = rg\left(rac{q}{p}
ight)$$

CPV in Interference between Mixing and Decay (Neutral)

$$\arg\left(\frac{q}{p} \frac{\overline{\mathcal{A}}_f}{\mathcal{A}_f} \right) \neq 0$$

A. Davis

Charm Mixing in the SM

- Only up-type quark system with mixing/CPV
- Mixing enters at 1 loop level in SM, GIM and CKM suppressed
- Non-perturbative long-range effects may dominate short-range interactions, difficult to calculate
- x, y expected to be small in short and long range limits, CPV expected to be $\mathcal{O}(10^{-3})$ in SM
- If enhancement of CPV is seen, could be caused by New Physics (NP)

 $\sigma(car{c})_{ ext{LHCb, 7TeV}} = 1419 \pm 133 \mu b$

Nucl.Phys.B 871(2013), 1

• $\sigma(b\bar{b})_{\text{LHCb, 7TeV}} = 75.3 \pm 14.1 \mu b$

Phys. Lett. B 694 (2010), 209

 > 1B reconstructed charm decays!

- $\sigma(car{c})_{
 m LHCb, \ 7TeV} = 1419 \pm 133 \mu b$ Nucl.Phys.B 871(2013), 1
- $\sigma(b\bar{b})_{\text{LHCb, 7TeV}} = 75.3 \pm 14.1 \mu b$

Phys. Lett. B 694 (2010), 209

- > 1B reconstructed charm decays!
- Today: Results from $\sqrt{s} = 7$ and 8 TeV 2011 and 2012 Data, 3fb^{-1}

A. Davis Charm Mixing and CPV at LHCb

Charm System	LHCb	$D^0 - \overline{D}^0$ Mixing/CPV	Muon Tagged ΔA_{CP}	Conclusions
		PRL 111,	, 251801 (2013) 2011+2012	2 Dataset

A. Davis

Charm System	LHCb	$D^0 - \overline{D}^0$ Mixing/CPV	Muon Tagged ΔA_{CP}	Conclusions
		PRL 111	, 251801 (2013) 2011+20	12 Dataset

World Average, All-CPV allowed

April 2013 LHCb 2011 1 fb⁻¹ $D^0 \rightarrow K\pi$

 $|q/p| = 0.69 \pm 0.16$

November 2013

LHCb 2011+2012, 3 fb^{-1} $D^0 \to K\pi$

Indirect CPV

 In the case of no Direct CPV, φ and |q/p| are related (superweak constraint)

$$an \phi = \left(1 - rac{q}{p}
ight) rac{x}{y}$$

Dataset	q/p [%]	φ[°]
HFAG April 2013	100.4 ± 6.5	-1.6 ± 2.5
HFAG Nov. 2013	$100.8 \pm \textbf{1.4}$	-0.3 ± 0.5

 $|q/p| = 0.91 \pm 0.10$

Charm System LHCb
$$D^{0} - \overline{D}^{0}$$
 Mixing/CPV Muon Tagged ΔA_{CP} Conclusions
NEW LHCb-PAPER-2014-013 (in prep.) 2011+2012 Dataset
Muon Tagged ΔA_{CP} and A_{CP} Review
• Define
 $A_{raw} = \frac{N(D \rightarrow f) - N(\overline{D} \rightarrow \overline{f})}{N(D \rightarrow f) + N(\overline{D} \rightarrow \overline{f})}$
• Use $B \rightarrow D^{0}\mu X$, with SCS $D^{0} \rightarrow KK$ and $D^{0} \rightarrow \pi\pi$
 $A_{raw} = A_{CP} + A_{D}(\mu) + A_{P}(B) + O(A^{3})$
What we
want Cancel in difference
(if kinematics agree)
 $\Delta A_{CP} = A_{raw}(KK) - A_{raw}(\pi\pi) = A_{CP}(KK) - A_{CP}(\pi\pi)$
• Can also get $A_{CP}(K^{-}K^{+})$ using $B \rightarrow (D^{0} \rightarrow K^{-}\pi^{+})\mu X$
 $A_{CP}(K^{-}K^{+}) = A_{raw}(K^{-}K^{+}) - A_{raw}(K^{-}\pi^{+}) + A_{D}(K^{-}\pi^{+})$
• And $A_{CP}(\pi^{-}\pi^{+})$, derived using
 $A_{CP}(\pi^{-}\pi^{+}) = A_{CP}(K^{-}K^{+}) - \Delta A_{CP}$

Charm System	LHCb	$D^0 - \overline{D}^0$ Mixing/CPV	Muon Tagged ΔA_{CP}	Conclusions
		NEW LHCb-PAPER-	2014-013 (in prep.) 2011+	-2012 Dataset

Analysis: Yields

Signal: Gaussian + Crystal Ball. Background: Exponential

A. Davis

Charm System	LHCb	$D^0 - \overline{D}^0$ Mixing/CPV	Muon Tagged ΔA_{CP}	Conclusions
		NEW LHCb-PAPER	-2014-013 (in prep.) 2011	+2012 Dataset

Nuisance Asymmetries

- CP asymmetries do not depend on kinematics
- Must remove nuisance asymmetries (kinematic dependent)
 - Control modes not needed for ΔA_{CP}

Reweight $D^{0}(p_{T}, \eta)$ from $D^{0} \rightarrow KK$ to match $D^{0} \rightarrow \pi\pi$ $A_{D}(\mu), A_{P}(B)$ $\Delta A_{CP} = A_{raw}(KK) - A_{raw}(\pi\pi) = A_{CP}(KK) - A_{CP}(\pi\pi)$

► A_{CP}(KK): 3 modes for full cancellation

 $A_{CP}(KK) = A_{\mathsf{raw}}(KK) - A_{\mathsf{raw}}(K^{-}\pi^{+}) + A_{\mathsf{raw}}(K^{-}\pi^{+}\pi^{+}) - A_{\mathsf{raw}}(\overline{K}^{0}\pi^{+}) - A_{D}(K^{0})$

• Measure detection asymmetries $A_D(K^0) = (0.054 \pm 0.014)\%$, $A_D(K^-\pi^+) = (-1.17 \pm 0.12)\%$

NEW LHCb-PAPER-2014-013 (in prep.) 2011+2012 Dataset

(Preliminary) Results

Source of Uncertainty	ΔA_{CP}	$A_{CP}(K^-K^+)$
Production Asymmetry:		
Difference in b-hadron mixture	0.02%	0.02%
Difference in B decay time acceptance	0.02%	0.02%
Production and Detection Asymmetry:		
Different weighting	0.02%	0.05%
Non-cancellation	-	0.03%
Neutral kaon asymmetry	-	0.01%
Background from real D ⁰ mesons:		
Mistag asymmetry	0.03%	0.03%
Background from fake D^0 mesons:		
D ⁰ mass fit model	0.06%	0.06%
Wrong background modeling	0.03%	0.03%
Quadratic Sum	0.08%	0.10%

$$\begin{array}{c} \boxed{\Delta A_{CP} = (+0.14 \pm 0.16 \pm 0.08)\%}_{A_{CP}(K^-K^+) = (-0.06 \pm 0.15 \pm 0.10)\%} \text{correlation } (\Delta A_{CP}, A_{CP}(KK)) \\ \rho = 0.28 \end{array}$$

$$A_{CP}(\pi^{-}\pi^{+}) = (-0.20 \pm 0.19 \pm 0.10)\%$$

Consistent with CP Symmetry

A. Davis

Charm System	LHCb	$D^0 - \overline{D}^0$ Mixing/CPV	Muon Tagged ΔA_{CP}	Conclusions
		NEW LHCb-PAPER	R-2014-013 (in prep.) 2011	+2012 Dataset

World Averages

A. Davis Charm Mixing and CPV at LHCb

Conclusions

- With 3 fb⁻¹, LHCb has
 - Searched for CPV in $D^0 \overline{D}^0$ system
 - Given tight constraints on ΔA_{CP} , $A_{CP}(KK)$ and $A_{CP}(\pi\pi)$
 - No sign of CPV yet
 - and much more
- Many analyses in progress on full 3 fb⁻¹ sample
- > 2015 is just around the corner! Stay tuned!

Backup Slides

PRL 111, 251801 (2013) 2011+2012 Dataset

Results

Results consistent with CP Conservation

A. Davis

NEW LHCb-PAPER-2014-013 (in prep.) 2011+2012 Dataset

$$\begin{split} \Delta A_{CP} & \rightarrow A_{CP} \\ \bullet \text{ Can get } A_D(\mu) \text{ and } A_P(B) \text{ from } \mu\text{-tagged } D^0 \rightarrow K^- \pi^+ \\ A_{raw}(K^- \pi^+) &= A_D(\mu) + A_P(B) + A_D(K^- \pi^+) \\ A_D(K^- \pi^+) &= A_{raw}(K^- \pi^+ \pi^+) - A_{raw}(\overline{K}^0 \pi^+) - A_D(K^0) \\ \hline \text{From Prompt} & \text{From Prompt} \\ D^+ \rightarrow K^- \pi^+ \pi^+ & D^+ \rightarrow \overline{K}^0 \pi^+ \\ \hline \text{Measure in this analysis.} \\ \text{Test removal by splitting by magnet polarity} \\ \hline \Delta A_{CP} &= A_{raw}(KK) - A_{raw}(\pi\pi) = A_{CP}(KK) - A_{CP}(\pi\pi) \\ \hline A_{CP}(KK) &= A_{raw}(KK) - A_{raw}(K^- \pi^+) + A_D(K^- \pi^+) \\ \hline A_{CP}(\pi\pi) &= A_{CP}(KK) - \Delta A_{CP} \\ \hline \text{A Davis} \end{split}$$

NEW LHCb-PAPER-2014-013 (in prep.) 2011+2012 Dataset

Neutral Kaon Asymmetry, $A_D(K^0)$

- Detect K_S^0 , dominated by decay to $\pi\pi$
- Need to describe mixing, CPV and absorption in detector
- Calculate by dividing into steps using LHCb Material Map and

A. Davis

 $A_D(K^-\pi^+)$

• Have all the info to calculate $A_D(K^-\pi^+)$

-	Asymmetry	Magnet Up [%]	Magnet Down [%]	Mean [%]
	$A_D(\overline{K}^0)$	-0.054 ± 0.014	-0.054 ± 0.014	-0.054 ± 0.014
	$A_{\sf raw}(K^-\pi^+\pi^+)$	-1.969 ± 0.033	-1.672 ± 0.032	-1.827 ± 0.023
	$A_{raw}(\overline{K}^0\pi^+)$	-0.94 ± 0.17	-0.51 ± 0.16	-0.71 ± 0.12
_	$A_D(K^-\pi^+)$	-1.08 ± 0.17	-1.22 ± 0.16	-1.17 ± 0.12

- Driven by different

 σ_{Interaction}(K) in matter
- Decreases with increasing p(K), as expected

NEW LHCb-PAPER-2014-013 (in prep.) 2011+2012 Dataset

μ Mistag Probability

- No handle on $m(B) \rightarrow \text{possible } \mu$ mis-id
- ► Dilutes observed asymmetry $\Delta A_{CP} = (1 + 2\omega)[A_{raw}(KK) - A_{raw}(\pi\pi)]$

$$A_{CP}(KK) = (1+2\omega)[A_{raw}(KK) - A_{raw}(K\pi)] + (1-2R)A_D(K\pi)$$

- Extract with $D^0 \rightarrow K^- \pi^+$, take CPV/Mixing into account
- Cross Check with $B \to \mu(D^* \to D^0 \pi_s) X$ subsample

$$\omega(\Delta A_{CP}) = (0.988 \pm 0.006)\%$$

 $\omega(A_{CP}(K^-K^+)) = (0.791 \pm 0.006)\%$

PV B
$$D^0$$
 μ K, π

A. Davis

(Preliminary) Results

	Magnet Up[%]	Magnet Down[%]	Mean[%]
$A_{\rm raw}(K^-K^+)$	-0.46 ± 0.11	-0.43 ± 0.11	-0.44 ± 0.08
$A_{raw}(\pi^{-}\pi^{+})$	-0.45 ± 0.20	-0.66 ± 0.19	-0.58 ± 0.14
ΔA_{CP}	-0.01 ± 0.23	$+0.24\pm0.22$	0.14 ± 0.16
$A_{\rm raw}(K^-K^+)$	-0.45 ± 0.12	-0.41 ± 0.12	-0.43 ± 0.08
$A_{raw}(K^{-}\pi^{+})$	-1.41 ± 0.05	-1.59 ± 0.05	-1.51 ± 0.04
$A_D(K^-\pi^+)$	-1.08 ± 0.07	-1.22 ± 0.16	-1.17 ± 0.12
$A_{CP}(K^-K^+)$	-0.09 ± 0.21	-0.01 ± 0.21	-0.06 ± 0.15

Source of Uncertainty	ΔA_{CP}	$A_{CP}(K^-K^+)$
Production Asymmetry:		
Difference in b-hadron mixture	0.02%	0.02%
Difference in B decay time acceptance	0.02%	0.02%
Production and Detection Asymmetry:		
Different weighting	0.02%	0.05%
Non-cancellation	-	0.03%
Neutral kaon asymmetry	-	0.01%
Background from real D ⁰ mesons:		
Mistag asymmetry	0.03%	0.03%
Background from fake D ⁰ mesons:		
D ⁰ mass fit model	0.06%	0.06%
Wrong background modeling	0.03%	0.03%
Quadratic Sum	0.08%	0.10%

$$\Delta A_{CP} = (+0.14 \pm 0.16 \pm 0.08)\%$$
$$A_{CP}(K^-K^+) = (-0.06 \pm 0.15 \pm 0.10)\%$$
$$\rho = 0.28$$
$$A_{CP}(\pi^-\pi^+) = (-0.20 \pm 0.19 \pm 0.10)\%$$
Consistent with CP Conservation

A. Davis

Semileptonic ΔA_{CP} Calculation of Asymmetries

- All production/detector asymmetries must cancel
- Reweight Kinematic distributions to remove residual production/detector asymmetries
 - Weight D^0 (p_T and η) distributions of KK to match $\pi\pi \rightarrow 8\%$ reduction in statistical power
- Additional reweighting for $A_{CP}(KK)$ to cancel D^+ asymmetries
 - $A_D(\mu), A_P(B): D^0 \to K\pi \ (p_T, \eta)$ reweighted to match $D^0 \to KK$

 ${\rightarrow}3\%$ further reduction

- $A(K\pi):D^+ \to K\pi\pi \ (p_T, \eta)$ reweighted to match $D^0 \to K\pi$ \to No loss of power due to high stats
- ► Residual $A(D^+), A(\pi)$: $D^+ \to \overline{K}^0 \pi^+, D^+$ and $\pi^+ (p_T, \eta)$ reweighted to match $D^+ \to K^- \pi^+ \pi^+$

 \rightarrow 77% reduction in statistical power

Needed to ensure full cancellation of detector/production asymmetries

A. Davis