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Mixing in a Nutshell

I Mixing in Neutral Mesons:
mass 6=flavor eigenstates

I Mass Eigenstates:

|D1,2〉 = p|D0〉 ± q|D0〉,
|p|2 + |q|2 = 1

x = m2−m1

Γ y = Γ2−Γ1

2Γ , Γ = Γ1+Γ2

2

3 Types of CPV

Direct CPV (Charged and Neutral)

Af = 〈f |H|D〉,Af = 〈f |H|D〉∣∣∣Af

Af

∣∣∣ 6= 1

CPV in Mixing (Neutral)∣∣∣ qp ∣∣∣ 6= 1

Weak Phase: φ = arg
(

q
p

)
CPV in Interference between Mixing
and Decay (Neutral)

arg
(

q
p
Af

Af

)
6= 0
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Charm Mixing in the SM
I Only up-type quark system with

mixing/CPV

I Mixing enters at 1 loop level in SM,
GIM and CKM suppressed

I Non-perturbative long-range effects
may dominate short-range
interactions, difficult to calculate

I x , y expected to be small in short and
long range limits, CPV expected to be
O(10−3) in SM

I If enhancement of CPV is seen, could
be caused by New Physics (NP)

What and Why How Background Studies Next Steps and Proposal

Theory
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VELO:

20 µm IP resolution
40fs σt

RICH: K/π Separation

Eur. Phys. J. C (2013) 73:2431 Page 15 of 17

Fig. 17 Kaon identification efficiency and pion misidentification rate
measured on data as a function of track momentum. Two different
! logL(K − π) requirements have been imposed on the samples, re-
sulting in the open and filled marker distributions, respectively

Fig. 18 Kaon identification efficiency and pion misidentification rate
measured using simulated events as a function of track momentum.
Two different ! logL(K − π) requirements have been imposed on the
samples, resulting in the open and filled marker distributions, respec-
tively

Fig. 19 Proton identification efficiency and pion misidentification rate
measured on data as a function of track momentum. Two different
! logL(p − π) requirements have been imposed on the samples, re-
sulting in the open and filled marker distributions, respectively

Fig. 20 Proton identification efficiency and kaon misidentification rate
measured on data as a function of track momentum. Two different
! logL(p − K) requirements have been imposed on the samples, re-
sulting in the open and filled marker distributions, respectively

Fig. 21 Pion misidentification fraction versus kaon identification efficiency as measured in 7 TeV LHCb collisions: (a) as a function of track
multiplicity, and (b) as a function of the number of reconstructed primary vertices. The efficiencies are averaged over all particle momenta

TT & T Stations:

∆p/p = 0.4%− 0.6%
for 5− 100 GeV Tracks

Dipole Magnet:

Reversible Polarity

I σ(cc̄)LHCb, 7TeV =
1419± 133µb
Nucl.Phys.B 871(2013), 1

I σ(bb̄)LHCb, 7TeV =
75.3± 14.1µb
Phys. Lett. B 694 (2010), 209

I > 1B reconstructed
charm decays!

I Today: Results from√
s = 7 and 8 TeV

2011 and 2012 Data,
3fb−1
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D0 − D0 Mixing/CPV
Analysis Strategy

I Reconstruct D∗+ → D0π+
s ,

I RS: D0 → K−π+

I WS: D0 → K+π−

I WS(t)/RS(t) →Separate mixing, DCS

I Split into D0(D∗+) and D
0
(D∗−)

PV
D∗

D0

πs K

π

A. Davis University of Cincinnati

D0 − D̄0 mixing and CPV from B → µD∗X 37 / 25

What and Why How Background Studies Next Steps and Proposal

D0 K+��

D
0

DCS

MIX CF
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D0 � D̄0 mixing and CPV from B ⇥ µD�X 2 / 25
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CPV Fit Strategy

I For small x & y ,

R(t)± =
(

WS(t)
RS(t)

)±
= R±D +

√
R±D y ′±

(
t
τ

)
+ (x′±)2+(y ′±)2

4

(
t
τ

)2

(
x ′

y ′

)
=

(
cos δ sin δ
− sin δ cos δ

)(
x
y

)
I Direct CPV → R+

D 6= R−D
I Indirect CPV → (x ′2+, y ′+) 6= (x ′2−, y ′−)

I Kπ detection asymmetry and secondary
decay accounted for in fit

τ/t
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Results
Direct and indirect CPV

R+
D [10−3] 3.545± 0.082± 0.048

y ′+[10−3] 5.1± 1.2± 0.7
x ′2+[10−5] 4.9± 6.0± 3.6
R−D [10−3] 3.591± 0.081± 0.048
y ′−[10−3] 4.5± 1.2± 0.7
x ′2−[10−5] 6.0± 5.8± 3.6
χ2/ndf 85.9/98

No direct CPV

RD [10−3] 3.568± 0.058± 0.033
y ′+[10−3] 4.8± 0.9± 0.6
x ′2+[10−5] 6.4± 4.7± 3.0
y ′−[10−3] 4.8± 0.9± 0.6
x ′2−[10−5] 4.6± 4.6± 3.0
χ2/ndf 86.0/99

No CPV

RD [10−3] 3.568± 0.058± 0.033
y ′[10−3] 4.8± 0.8± 0.5
x ′2[10−5] 5.5± 4.2± 2.6
χ2/ndf 86.4/101

WS mixing and CPV — Results

�11
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CDF

Precision on mixing parameters improved by 2.5× 
wrt our previous result [PRL 110 (2013) 101802]

RD (10�3) y0 (10�3) x02 (10�3)
LHCb 3.568 ± 0.066 4.8 ± 1.0 0.055 ± 0.049
BaBar 3.03 ± 0.19 9.7 ± 5.4 �0.22 ± 0.37
Belle 3.53 ± 0.13 4.6 ± 3.4 0.09 ± 0.22
CDF 3.51 ± 0.35 4.3 ± 4.3 0.08 ± 0.18

BaBar: PRL 98 (2007) 211802
LHCb: PRL 111 (2013) 251801

Belle: arXiv:1401.3402
CDF: PRL 111 (2013) 231802

Results consistent with CP Conservation

PRL 111, 251801 (2013) 2011+2012 Dataset

BaBar: PRL 98 (2007) 211802

Belle: arXiv:1401.3402

CDF: PRL 111 (2013) 231802
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World Average, All-CPV allowed

April 2013
LHCb 2011 1 fb−1 D0 → Kπ

November 2013
LHCb 2011+2012, 3 fb−1 D0 → Kπ

and LHCb 2011, 1 fb−1AΓ

|q/p| = 0.69± 0.16 |q/p| = 0.91± 0.10

Indirect CPV

I In the case of no
Direct CPV, φ and
|q/p| are related
(superweak
constraint)

tanφ =
(

1− q
p

)
x
y

Dataset |q/p|[%] φ[◦]
HFAG April 2013 100.4± 6.5 −1.6± 2.5

HFAG Nov. 2013 100.8± 1.4 −0.3± 0.5

PRL 111, 251801 (2013) 2011+2012 Dataset
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Muon Tagged ∆ACP and ACP Review
I Define

Araw =
N(D → f )− N(D → f )

N(D → f ) + N(D → f )

I Use B → D0µX , with SCS D0 → KK and D0 → ππ

Araw = ACP + AD(µ) + AP(B) +O(A3)

What we
want

Cancel in difference
(if kinematics agree)

∆ACP = Araw(KK )− Araw(ππ) = ACP(KK )− ACP(ππ)

I Can also get ACP(K−K+) using B → (D0 → K−π+)µX

ACP(K−K+) = Araw(K−K+)− Araw(K−π+) + AD(K−π+)

I And ACP(π−π+), derived using

ACP(π−π+) = ACP(K−K+)−∆ACP

NEW LHCb-PAPER-2014-013 (in prep.) 2011+2012 Dataset

PV D0

X

µ
⌫µ

B

K , ⇡

K , ⇡

A. Davis
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Analysis: Yields
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Figure 1: Invariant mass distributions for muon-tagged (a) D0! K�K+, (b) D0! ⇡�⇡+ and

(c) D0 ! K�⇡+ candidates and for prompt (d) D+ ! K�⇡+⇡+ and D+ ! K
0
⇡+ candidates.

The results of the fits are overlaid.

avoided by assigning weights to each candidate such that the kinematic distributions are184

equalised. For the measurement of �ACP , the D0 candidates in the D0! K�K+ decay are185

given a weight depending on their value of pT and ⌘, which are the most relevant kinematic186

variables. The weights are chosen such that the weighted and background-subtracted187
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Figure 1: Invariant mass distributions for muon-tagged (a) D0! K�K+, (b) D0! ⇡�⇡+ and

(c) D0 ! K�⇡+ candidates and for prompt (d) D+ ! K�⇡+⇡+ and D+ ! K
0
⇡+ candidates.

The results of the fits are overlaid.

avoided by assigning weights to each candidate such that the kinematic distributions are184

equalised. For the measurement of �ACP , the D0 candidates in the D0! K�K+ decay are185

given a weight depending on their value of pT and ⌘, which are the most relevant kinematic186

variables. The weights are chosen such that the weighted and background-subtracted187

6

D0 → KK
∼ 2.2M
(∆ACP)
∼ 1.8M

(ACP(KK ))

D0 → ππ
∼ 0.77M
(∆ACP)

Preliminary Preliminary

Preliminary Preliminary Preliminary

Signal: Gaussian + Crystal Ball. Background: Exponential

NEW LHCb-PAPER-2014-013 (in prep.) 2011+2012 Dataset

D0 → K−π+

∼ 8.95M
(ACP(KK ))

D+ → K−π+π+

∼ 40.1M

D+ → K 0
Sπ

+

∼ 3.7M
(VELO+TT+T)
∼ 2.5M
(T+TT)
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Charm System LHCb D0 − D
0
Mixing/CPV Muon Tagged ∆ACP Conclusions

Nuisance Asymmetries
I CP asymmetries do not depend on kinematics

I Must remove nuisance asymmetries (kinematic dependent)
I Control modes not needed for ∆ACP

Reweight D0(pT , η) from D0 → KK to match D0 → ππ

AD(µ),AP(B)

∆ACP = Araw(KK )− Araw(ππ) = ACP(KK )− ACP(ππ)

I ACP(KK ): 3 modes for full cancellation

D0(pT , η) from
D0 → Kπ

to match D0 → KK
AD(µ),AP(B)

K , πnotTrigger (pT , η) from
prompt D+ → Kππ
to match D0 → Kπ

A(Kπ)

D+, πTrigger (pT , η) from

prompt D+ → K
0
π

to match D+ → Kππ
A(D+),A(π)

ACP(KK ) = Araw(KK ) − Araw(K−π+) + Araw(K−π+π+) − Araw(K
0
π+) − AD(K 0)

I Measure detection asymmetries
AD(K 0) = (0.054± 0.014)%, AD(K−π+) = (−1.17± 0.12)%

NEW LHCb-PAPER-2014-013 (in prep.) 2011+2012 Dataset

A. Davis
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Charm System LHCb D0 − D
0
Mixing/CPV Muon Tagged ∆ACP Conclusions

(Preliminary) Results
Source of Uncertainty ∆ACP ACP(K−K+)

Production Asymmetry:
Difference in b-hadron mixture 0.02% 0.02%
Difference in B decay time acceptance 0.02% 0.02%

Production and Detection Asymmetry:
Different weighting 0.02% 0.05%
Non-cancellation - 0.03%
Neutral kaon asymmetry - 0.01%

Background from real D0 mesons:
Mistag asymmetry 0.03% 0.03%

Background from fake D0 mesons:
D0 mass fit model 0.06% 0.06%
Wrong background modeling 0.03% 0.03%

Quadratic Sum 0.08% 0.10%

∆ACP = (+0.14± 0.16± 0.08)%

ACP(K−K+) = (−0.06± 0.15± 0.10)%

ACP(π−π+) = (−0.20± 0.19± 0.10)%

Consistent with CP Symmetry

NEW LHCb-PAPER-2014-013 (in prep.) 2011+2012 Dataset

ρ = 0.28
Correlation (∆ACP , ACP (KK))

A. Davis
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Charm System LHCb D0 − D
0
Mixing/CPV Muon Tagged ∆ACP Conclusions

World Averages
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Figure 7: Overview of CP violation measurements in D0 ! K�K+ and D0 ! ⇡�⇡+ decays
showing (a) their di↵erence, �ACP , and (b) the ACP (K�K+) versus ACP (⇡�⇡+) plane. The
one-sigma contours are displayed. The results are shown from BaBar [9], CDF [10], Belle [11],
LHCb (pion-tagged) [7] and this paper. The world averages are obtained neglecting any e↵ect
from indirect CP violation.

in the D0! ⇡�⇡+ decay is found to be ACP (⇡�⇡+) = (�0.20 ± 0.19 (stat) ± 0.10 (syst))%.418

These results constitute the most precise measurements of time-integrated CP -violating419

asymmetries ACP (K�K+) and ACP (⇡�⇡+) from a single experiment to date. These results420

are obtained assuming that there is no CP violation in D0 mixing and no direct CP viola-421

tion in the Cabibbo-favoured D0! K�⇡+, D+! K�⇡+⇡+ and D+! K
0
⇡+ calibration422

decay modes. The measurement of �ACP supersedes the previously reported result [8] and423

is of similar precision to the preliminary measurement using D0 mesons tagged by the pion424

charge from D⇤+ !D0⇡+ decays that was performed with LHCb’s 1 fb�1 data set [7]. An425

overview of the current measurements of �ACP is shown in Fig. 7(a). Neglecting any e↵ect426

from indirect CP violation, a new world average of �ACP = (�0.25 ± 0.11)% is obtained.427

Figure 7(b) gives an overview of all measurements in the ACP (K�K+) versus ACP (⇡�⇡+)428

plane. The updated world averages are found to be ACP (K�K+) = (�0.15 ± 0.11)% and429

ACP (⇡�⇡+) = (0.10 ± 0.12)% with a correlation of 0.57.430
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Charm System LHCb D0 − D
0
Mixing/CPV Muon Tagged ∆ACP Conclusions

Conclusions

I With 3 fb−1, LHCb has

I Searched for CPV in D0 − D
0

system
I Given tight constraints on ∆ACP ,ACP(KK ) and ACP(ππ)
I No sign of CPV yet
I and much more

I Many analyses in progress on full 3 fb−1 sample

I 2015 is just around the corner! Stay tuned!

A. Davis
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Results
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 68.3% CL0D
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No CPV(c)  

99.7% CL

95.5% CL

68.3% CL

Direct and indirect CPV

R+
D [10−3] 3.545± 0.082± 0.048

y ′+[10−3] 5.1± 1.2± 0.7
x ′2+[10−5] 4.9± 6.0± 3.6
R−D [10−3] 3.591± 0.081± 0.048
y ′−[10−3] 4.5± 1.2± 0.7
x ′2−[10−5] 6.0± 5.8± 3.6
χ2/ndf 85.9/98

No direct CPV

RD [10−3] 3.568± 0.058± 0.033
y ′+[10−3] 4.8± 0.9± 0.6
x ′2+[10−5] 6.4± 4.7± 3.0
y ′−[10−3] 4.8± 0.9± 0.6
x ′2−[10−5] 4.6± 4.6± 3.0
χ2/ndf 86.0/99

No CPV

RD [10−3] 3.568± 0.058± 0.033
y ′[10−3] 4.8± 0.8± 0.5
x ′2[10−5] 5.5± 4.2± 2.6
χ2/ndf 86.4/101

Results consistent with CP Conservation

PRL 111, 251801 (2013) 2011+2012 Dataset
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∆ACP → ACP

I Can get AD(µ) and AP(B) from µ-tagged D0 → K−π+

Araw(K−π+) = AD(µ) + AP(B) + AD(K−π+)

AD(K−π+) = Araw(K−π+π+) − Araw(K
0
π+) − AD(K 0)

From Prompt
D+ → K−π+π+

From Prompt

D+ → K
0
π+

Measure in this analysis.
Test removal by splitting by magnet polarity

∆ACP = Araw(KK )− Araw(ππ) = ACP(KK )− ACP(ππ)

ACP(KK ) = Araw(KK )− Araw(K−π+) + AD(K−π+)

ACP(ππ) = ACP(KK )−∆ACP , Accounting for Correlation

Final Result: Weighted Average of 2011+2012

NEW LHCb-PAPER-2014-013 (in prep.) 2011+2012 Dataset

A. Davis
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Neutral Kaon Asymmetry, AD(K 0)

I Detect K 0
S , dominated by decay to ππ

I Need to describe mixing, CPV and absorption in detector

I Calculate by dividing into steps using LHCb Material Map and
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Figure 2: Raw asymmetry in the D+ ! K
0
⇡+ decay shown for (a) long and (b) downstream

K0
S candidates versus the K0

S decay time in units of its lifetime. The long K0
S candidates are

reconstructed in the full data set, while the downstream K0
S candidates are reconstructed in

the 2012 data only. The predicted e↵ect from the K0 asymmetry is also shown (note that
the predicted K0 asymmetry at t = 0 is zero and that the K0 asymmetry contributes with

opposite sign in the raw D+! K
0
⇡+ asymmetry). An overall shift is applied to the predicted

K0 asymmetry to account for D+ production and pion detection asymmetries.

D+ ! K
0
⇡+ candidate, the path of the neutral kaon is divided into small steps using242

the material map of the LHCb detector. At each step the amplitudes are updated using243

Eq. (9) starting with either a K0 and K
0

as initial state. The expected K0 asymmetry for244

a given event is then simply the asymmetry in the decay rates between the K0 and K
0

245

initial states. The overall asymmetry is calculated from the expected asymmetry averaged246

over all reconstructed D+! K
0
⇡+ events.247

The measured raw asymmetry in the D+ ! K
0
⇡+ decay and the e↵ect from the248

predicted K0 asymmetry are shown as functions of the K0
S decay time in Fig. 2. The249

measured raw asymmetry receives contributions not only from the K0 detection asymmetry,250

but also from the pion tracking asymmetry and D+ production asymmetry. Therefore,251

an overall shift is applied to the predicted asymmetry to match the data. The downward252

trend coming from the K0 asymmetry is clearly visible, in particular for the downstream253

K0
S candidates. The predicted asymmetry dependence agrees well with the data with254

p-values of 0.81 and 0.31, respectively.255

For the ACP (K�K+) measurement only K0
S candidates reconstructed with long tracks256

are used. These candidates probe lower K0
S decay times, compared to those reconstructed257

with downstream tracks, resulting in a much smaller K0 asymmetry correction. Never-258

theless, the e↵ect observed in the downstream-reconstructed K0
S candidates is used to259

test how well the K0 detection asymmetry is modelled. The measured di↵erence in raw260

asymmetry between the samples is (0.49 ± 0.12)%, which is obtained after weighting the261

long-reconstructed D+ ! K
0
⇡+ sample to correct for di↵erences in the D+ production262

and pion detection asymmetries. This number agrees well with the expected di↵erence of263

9

I VELO+T+TT, 2011+2012: result, 2012 T+TT: systematic

I Includes overall shift to account for AP(D+) and ATracking(π)

AD(K 0) = (0.054± 0.014(syst))%

Preliminary Preliminary

VELO+T+TT
2011+2012

T+TT
2012

p-value:0.81 p-value:0.31

NEW LHCb-PAPER-2014-013 (in prep.) 2011+2012 Dataset
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AD(K−π+)

I Have all the info to calculate AD(K−π+)

Asymmetry Magnet Up [%] Magnet Down [%] Mean [%]

AD(K
0
) −0.054± 0.014 −0.054± 0.014 −0.054± 0.014

Araw(K−π+π+) −1.969± 0.033 −1.672± 0.032 −1.827± 0.023

Araw(K
0
π+) −0.94± 0.17 −0.51± 0.16 −0.71± 0.12

AD(K−π+) −1.08± 0.17 −1.22± 0.16 −1.17± 0.12

Table 2: Asymmetries (in %) entering in the calculation of the K�⇡+ detection asymmetry
(AD(K�⇡+)) for the two magnet polarities, and for the mean value. The correction for the K0

asymmetry is applied in the last row. The mean values in the last column are obtained first
by taking the arithmetic average over the magnet polarities and then by taking the weighted
averages of the 2011 and 2012 data sets. The uncertainties are statistical only.

Magnet up Magnet down Mean

Araw(K�⇡+⇡+) �1.969±0.033 �1.672±0.032 �1.827±0.023

Araw(K
0
⇡+) �0.94±0.17 �0.51±0.16 �0.71±0.12

AD(K�⇡+) �1.09±0.17 �1.22±0.16 �1.17±0.12
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Figure 3: Measured K�⇡+ detection asymmetry as a function of the kaon momentum. The
shaded band indicates the average asymmetry integrated over the bins. Note that there is a large

correlation between the data points as there is a large overlap in the D+! K
0
⇡+ samples used

for each bin.

6 Systematic uncertainties329

Systematic shifts in the observed CP asymmetries can arise from non-cancellation of330

production and detection asymmetries, from misreconstruction of the final state, and from331

non-perfect modelling of the background. The contributions to the systematic uncertainties332

in �ACP and ACP (K�K+) are described below.333

The fractions of B0 and B+ decays in the semileptonic B samples can be slightly334

di↵erent. Assuming that there is a di↵erence in the B0 and B+ production asymmetries, a335

residual production asymmetry can remain in �ACP and ACP (K�K+). As in the previous336

analysis [8], a systematic uncertainty of 0.02% is found and assigned to both �ACP and337

ACP (K�K+). Due to B0 mixing, the observed B production asymmetry depends on the338

decay time acceptance of the reconstructed B meson, which is slightly di↵erent for the339

three decay modes. This produces a systematic uncertainty of 0.02% for both �ACP and340

12

I Driven by different
σInteraction(K ) in matter

I Decreases with increasing
p(K ), as expected

Preliminary

NEW LHCb-PAPER-2014-013 (in prep.) 2011+2012 Dataset
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µ Mistag Probability
I No handle on m(B)→ possible µ mis-id

I Dilutes observed asymmetry
∆ACP = (1 + 2ω)[Araw(KK )− Araw(ππ)]

ACP(KK ) =
(1+2ω)[Araw(KK )−Araw(Kπ)]+(1−2R)AD(Kπ)

I R = (R+ + R−)/2
= (0.389± 0.003)%, from Mixing/CPV, time
integrated

I Extract with D0 → K−π+, take CPV/Mixing
into account

I Cross Check with B → µ(D∗ → D0πs)X
subsample

PV D0

X

µ
⌫µ

B

K , ⇡

K , ⇡

A. Davis

Charm Mixing and CPV at LHCb 13 / 10

PV
B

D∗

h

D0

πs

µ

K

π

A. Davis University of Cincinnati

D0 − D̄0 mixing and CPV from B → µD∗X 37 / 25

ω(∆ACP) = (0.988± 0.006)%

ω(ACP(K−K+)) = (0.791± 0.006)%

NEW LHCb-PAPER-2014-013 (in prep.) 2011+2012 Dataset
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(Preliminary) Results

Magnet Up[%] Magnet Down[%] Mean[%]

Araw(K−K+) −0.46± 0.11 −0.43± 0.11 −0.44± 0.08
Araw(π−π+) −0.45± 0.20 −0.66± 0.19 −0.58± 0.14

∆ACP −0.01± 0.23 +0.24± 0.22 0.14± 0.16

Araw(K−K+) −0.45± 0.12 −0.41± 0.12 −0.43± 0.08
Araw(K−π+) −1.41± 0.05 −1.59± 0.05 −1.51± 0.04
AD(K−π+) −1.08± 0.07 −1.22± 0.16 −1.17± 0.12

ACP(K−K+) −0.09± 0.21 −0.01± 0.21 −0.06± 0.15

Source of Uncertainty ∆ACP ACP(K−K+)

Production Asymmetry:
Difference in b-hadron mixture 0.02% 0.02%
Difference in B decay time acceptance 0.02% 0.02%

Production and Detection Asymmetry:
Different weighting 0.02% 0.05%
Non-cancellation - 0.03%
Neutral kaon asymmetry - 0.01%

Background from real D0 mesons:
Mistag asymmetry 0.03% 0.03%

Background from fake D0 mesons:
D0 mass fit model 0.06% 0.06%
Wrong background modeling 0.03% 0.03%

Quadratic Sum 0.08% 0.10%

∆ACP = (+0.14± 0.16± 0.08)%

ACP(K−K+) = (−0.06± 0.15± 0.10)%

ρ = 0.28

ACP(π−π+) = (−0.20± 0.19± 0.10)%

Consistent with CP Conservation

NEW LHCb-PAPER-2014-013 (in prep.) 2011+2012 Dataset
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Semileptonic ∆ACP Calculation of Asymmetries
I All production/detector asymmetries must cancel

I Reweight Kinematic distributions to remove residual
production/detector asymmetries

I Weight D0 (pT and η) distributions of KK to match ππ
→ 8% reduction in statistical power

I Additional reweighting for ACP(KK ) to cancel D+ asymmetries
I AD(µ),AP(B):D0 → Kπ (pT , η) reweighted to match

D0 → KK
→3% further reduction

I A(Kπ):D+ → Kππ (pT , η) reweighted to match D0 → Kπ
→ No loss of power due to high stats

I Residual A(D+),A(π): D+ → K
0
π+, D+ and π+ (pT , η)

reweighted to match D+ → K−π+π+

→ 77% reduction in statistical power

I Needed to ensure full cancellation of detector/production
asymmetries

NEW LHCb-PAPER-2014-013 (in prep.) 2011+2012 Dataset

A. Davis

Charm Mixing and CPV at LHCb 22 / 14


	Charm System
	LHCb
	D0-D0 Mixing/CPV
	Muon Tagged ACP
	Conclusions
	Appendix

