Charm Mixing and CPV at LHCb

Adam Davis
On behalf of the LHCb Collaboration

May 6, 2014

PHENO 2014

A. Davis

Outline

Charm System

LHCb
$D^{0}-\bar{D}^{0}$ Mixing/CPV

Muon Tagged $\Delta A_{C P}$ NEW!

Conclusions

3 Types of CPV

Direct CPV (Charged and Neutral)
$\mathcal{A}_{f}=\langle f| \mathcal{H}|D\rangle, \overline{\mathcal{A}}_{\bar{f}}=\langle\bar{f}| \mathcal{H}|\bar{D}\rangle$
$\left|\frac{\overline{\mathcal{A}}_{\bar{F}}}{\mathcal{A}_{f}}\right| \neq 1$
mass $=$ flavor eigenstates

- Mass Eigenstates:

$$
\begin{aligned}
& \left|D_{1,2}\right\rangle=p\left|D^{0}\right\rangle \pm q\left|\bar{D}^{0}\right\rangle, \\
& |p|^{2}+|q|^{2}=1 \\
& x=\frac{m_{2}-m_{1}}{\Gamma} \quad y=\frac{\Gamma_{2}-\Gamma_{1}}{2 \Gamma}, \Gamma=\frac{\Gamma_{1}+\Gamma_{2}}{2}
\end{aligned}
$$

Mixing in a Nutshell

- Mixing in Neutral Mesons:

Charm Mixing in the SM

- Only up-type quark system with mixing/CPV

Short Range

 W
Long Range

- Mixing enters at 1 loop level in SM, GIM and CKM suppressed
- Non-perturbative long-range effects may dominate short-range interactions, difficult to calculate
- x,y expected to be small in short and long range limits, CPV expected to be $\mathcal{O}\left(10^{-3}\right)$ in SM
- If enhancement of CPV is seen, could be caused by New Physics (NP)

LHCb HES

- $\sigma(c \bar{c})_{\mathrm{LHCb}}, 7 \mathrm{TeV}=$ $1419 \pm 133 \mu b$

Nucl.Phys.B 871(2013), 1

- $\sigma(b \bar{b})_{\mathrm{LHCb}, 7 \mathrm{TeV}}=$ $75.3 \pm 14.1 \mu b$
Phys. Lett. B 694 (2010), 209
- $>1 \mathrm{~B}$ reconstructed charm decays!

LHCb

- $\sigma(c \bar{c})_{\text {LHCb, }}{ }^{7 \mathrm{TeV}}=$ $1419 \pm 133 \mu b$

Nucl.Phys.B 871(2013), 1

- $\sigma(b \bar{b})_{\mathrm{LHCb}, 7 \mathrm{TeV}}=$ $75.3 \pm 14.1 \mu b$
Phys. Lett. B 694 (2010), 209
- > 1B reconstructed charm decays!
- Today: Results from $\sqrt{s}=7$ and 8 TeV 2011 and 2012 Data, $3 \mathrm{fb}^{-1}$

A. Davis

Analysis Strategy

- Reconstruct $D^{*+} \rightarrow D^{0} \pi_{s}^{+}$,
- RS: $D^{0} \rightarrow K^{-} \pi^{+}$
- WS: $D^{0} \rightarrow K^{+} \pi^{-}$
- WS $(t) / \mathrm{RS}(t) \rightarrow$ Separate mixing, DCS
- Split into $D^{0}\left(D^{*+}\right)$ and $\bar{D}^{0}\left(D^{*-}\right)$

CPV Fit Strategy

- For small $x \& y$,

$$
\begin{aligned}
& R(t)^{ \pm}=\left(\frac{W S(t)}{R S(t)}\right)^{ \pm} \\
& =R_{D}^{ \pm}+\sqrt{R_{D}^{ \pm} y^{\prime \pm}\left(\frac{t}{\tau}\right)+\frac{\left(x^{\prime \pm}\right)^{2}+\left(y^{\prime \pm}\right)^{2}}{4}}\left(\frac{t}{\tau}\right)^{2} \\
& \binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}
\cos \delta & \sin \delta \\
-\sin \delta & \cos \delta
\end{array}\right)\binom{x}{y}
\end{aligned}
$$

- Direct CPV $\rightarrow R_{D}^{+} \neq R_{D}^{-}$
- Indirect CPV $\rightarrow\left(x^{\prime 2+}, y^{\prime+}\right) \neq\left(x^{\prime 2-}, y^{\prime-}\right)$
- $K \pi$ detection asymmetry and secondary decay accounted for in fit

Results

$R_{D}^{+}\left[10^{-3}\right]$	$3.545 \pm 0.082 \pm 0.048$
$y^{\prime+}\left[10^{-3}\right]$	$5.1 \pm 1.2 \pm 0.7$
$x^{\prime 2+}\left[10^{-5}\right]$	$4.9 \pm 6.0 \pm 3.6$
$R_{D}^{-}\left[10^{-3}\right]$	$3.591 \pm 0.081 \pm 0.048$
$y^{\prime}\left[10^{-3}\right]$	$4.5 \pm 1.2 \pm 0.7$
$x^{\prime 2-}\left[10^{-5}\right]$	$6.0 \pm 5.8 \pm 3.6$
$\chi^{2} /$ ndf	$85.9 / 98$

No direct CPV			No CPV	
$R_{D}\left[10^{-3}\right]$	$3.568 \pm 0.058 \pm 0.033$		$R_{D}\left[10^{-3}\right]$	$3.568 \pm 0.058 \pm 0.033$
$y^{\prime+}\left[10^{-3}\right]$	$4.8 \pm 0.9 \pm 0.6$		$y^{\prime}\left[10^{-3}\right]$	$4.8 \pm 0.8 \pm 0.5$
$x^{\prime 2+}\left[10^{-5}\right]$	$6.4 \pm 4.7 \pm 3.0$		$x^{\prime 2}\left[10^{-5}\right]$	$5.5 \pm 4.2 \pm 2.6$
$y^{\prime-}\left[10^{-3}\right]$	$4.8 \pm 0.9 \pm 0.6$		χ^{2} / ndf	$86.4 / 101$
$x^{\prime 2-}\left[10^{-5}\right]$	$4.6 \pm 4.6 \pm 3.0$			
$\chi^{2} /$ ndf	$86.0 / 99$			

BaBar: PRL 98 (2007) 211802
Belle: arXiv:1401.3402
CDF: PRL 111 (2013) 231802

Results consistent with CP Conservation

A. Davis

World Average, All-CPV allowed

April 2013
LHCb $20111 \mathrm{fb}^{-1} D^{0} \rightarrow K \pi$

$|q / p|=0.69 \pm 0.16$

November 2013
LHCb 2011+2012, $3 \mathrm{fb}^{-1} D^{0} \rightarrow K \pi$

$|q / p|$

Indirect CPV

- In the case of no Direct CPV, ϕ and $|q / p|$ are related (superweak constraint)

$$
\tan \phi=\left(1-\frac{q}{p}\right) \frac{x}{y}
$$

Dataset	$\|q / p\|[\%]$	$\phi\left[{ }^{\circ}\right]$
HFAG April 2013	100.4 ± 6.5	-1.6 ± 2.5
HFAG Nov. 2013	100.8 ± 1.4	-0.3 ± 0.5

$$
|q / p|=0.91 \pm 0.10
$$

Muon Tagged $\Delta A_{C P}$ and $A_{C P}$ Review

- Define

$$
A_{\mathrm{raw}}=\frac{N(D \rightarrow f)-N(\bar{D} \rightarrow \bar{f})}{N(D \rightarrow f)+N(\bar{D} \rightarrow \bar{f})}
$$

- Use $B \rightarrow D^{0} \mu X$, with SCS $D^{0} \rightarrow K K$ and $D^{0} \rightarrow \pi \pi$

$$
\begin{array}{cc}
A_{\text {raw }}=A_{C P} & +A_{D}(\mu)+A_{P}(B)+\mathcal{O}\left(A^{3}\right) \\
\begin{array}{c}
\text { What we } \\
\text { want }
\end{array} & \begin{array}{c}
\text { Cancel in difference } \\
\text { (if kinematics agree) }
\end{array} \\
\hline
\end{array}
$$

$$
\Delta A_{C P}=A_{\text {raw }}(K K)-A_{\text {raw }}(\pi \pi)=A_{C P}(K K)-A_{C P}(\pi \pi)
$$

- Can also get $A_{C P}\left(K^{-} K^{+}\right)$using $B \rightarrow\left(D^{0} \rightarrow K^{-} \pi^{+}\right) \mu X$

$$
A_{C P}\left(K^{-} K^{+}\right)=A_{\text {raw }}\left(K^{-} K^{+}\right)-A_{\text {raw }}\left(K^{-} \pi^{+}\right)+A_{D}\left(K^{-} \pi^{+}\right)
$$

- And $A_{C P}\left(\pi^{-} \pi^{+}\right)$, derived using

$$
A_{C P}\left(\pi^{-} \pi^{+}\right)=A_{C P}\left(K^{-} K^{+}\right)-\Delta A_{C P}
$$

Analysis: Yields

Signal: Gaussian + Crystal Ball. Background: Exponential

NEW LHCb-PAPER-2014-013 (in prep.) 2011+2012 Dataset

Nuisance Asymmetries

- CP asymmetries do not depend on kinematics
- Must remove nuisance asymmetries (kinematic dependent)
- Control modes not needed for $\Delta A_{C P}$

$$
\begin{aligned}
& \text { Reweight } D^{0}\left(p_{T}, \eta\right) \text { from } D^{0} \rightarrow K K \text { to match } D^{0} \rightarrow \pi \pi \\
& \qquad A_{D}(\mu), A_{P}(B) \\
& \Delta A_{C P}=A_{\text {raw }}(K K)-A_{\text {raw }}(\pi \pi)=A_{C P}(K K)-A_{C P}(\pi \pi)
\end{aligned}
$$

- $A_{C P}(K K): 3$ modes for full cancellation

$$
\begin{gathered}
D^{0}\left(p_{T}, \eta\right) \text { from } \\
D^{0} \rightarrow K \pi
\end{gathered}
$$

to match $D^{0} \rightarrow K K$
$A_{D}(\mu), A_{P}(B)$
$K, \pi_{\text {not }} \operatorname{Trigger}\left(p_{T}, \eta\right)$ from prompt $D^{+} \rightarrow K \pi \pi$ to match $D^{0} \rightarrow K \pi$ $A(K \pi)$
$D^{+}, \pi_{\text {Trigger }}\left(p_{T}, \eta\right)$ from prompt $D^{+} \rightarrow \bar{K}^{0} \pi$ to match $D^{+} \rightarrow K \pi \pi$ $A\left(D^{+}\right), A(\pi)$
$A_{C P}(K K)=A_{\text {raw }}(K K)-A_{\text {raw }}\left(K^{-} \pi^{+}\right)+A_{\text {raw }}\left(K^{-} \pi^{+} \pi^{+}\right)-A_{\text {raw }}\left(K^{0} \pi^{+}\right)-A_{D}\left(K^{0}\right)$

- Measure detection asymmetries

$$
A_{D}\left(K^{0}\right)=(0.054 \pm 0.014) \%, A_{D}\left(K^{-} \pi^{+}\right)=(-1.17 \pm 0.12) \%
$$

NEW LHCb-PAPER-2014-013 (in prep.) 2011+2012 Dataset

(Preliminary) Results

Source of Uncertainty	$\Delta A_{C P}$	$A_{C P}\left(K^{-} K^{+}\right)$
Production Asymmetry:		
\quad Difference in b-hadron mixture	0.02%	0.02%
\quad Difference in B decay time acceptance	0.02%	0.02%
Production and Detection Asymmetry:		
\quad Different weighting	0.02%	0.05%
\quad Non-cancellation	-	0.03%
\quad Neutral kaon asymmetry	-	0.01%
Background from real D^{0} mesons: 0.03% 0.03% \quad Mistag asymmetry Background from fake D^{0} mesons: 0.06% 0.06% $\quad D^{0}$ mass fit model 0.03% 0.03% \quad Wrong background modeling 0.08% 0.10% Quadratic Sum		

$$
\begin{gathered}
\Delta A_{C P}=(+0.14 \pm 0.16 \pm 0.08) \% \\
A_{C P}\left(K^{-} K^{+}\right)=(-0.06 \pm 0.15 \pm 0.10) \% \\
\text { Correation } \left.\left(\Delta_{A C P}\right) A_{C P}(K K)\right) \\
=0.28
\end{gathered}
$$

$$
A_{C P}\left(\pi^{-} \pi^{+}\right)=(-0.20 \pm 0.19 \pm 0.10) \%
$$

Consistent with CP Symmetry
A. Davis

World Averages

A. Davis

Conclusions

- With $3 \mathrm{fb}^{-1}$, LHCb has
- Searched for CPV in $D^{0}-\bar{D}^{0}$ system
- Given tight constraints on $\Delta A_{C P}, A_{C P}(K K)$ and $A_{C P}(\pi \pi)$
- No sign of CPV yet
- and much more
- Many analyses in progress on full $3 \mathrm{fb}^{-1}$ sample
- 2015 is just around the corner! Stay tuned!

Backup Slides

Results

Results consistent with CP Conservation

A. Davis

- Can get $A_{D}(\mu)$ and $A_{P}(B)$ from μ-tagged $D^{0} \rightarrow K^{-} \pi^{+}$

$$
\begin{gathered}
A_{\mathrm{raw}}\left(K^{-} \pi^{+}\right)=A_{D}(\mu)+A_{P}(B)+A_{D}\left(K^{-} \pi^{+}\right) \\
A_{D}\left(K^{-} \pi^{+}\right)=A_{\text {raw }}\left(K^{-} \pi^{+} \pi^{+}\right)-A_{\text {raw }}\left(\bar{K}^{0} \pi^{+}\right)-A_{D}\left(K^{0}\right) \\
\text { From Prompt } \\
D^{+} \rightarrow K^{-} \pi^{+} \pi^{+} \\
\text {From Prompt } \\
D_{\lambda}^{+} \rightarrow \bar{K}^{0} \pi^{+}
\end{gathered}
$$

Measure in this analysis.
Test removal by splitting by magnet polarity

$$
\begin{gathered}
\Delta A_{C P}=A_{\mathrm{raw}}(K K)-A_{\mathrm{raw}}(\pi \pi)=A_{C P}(K K)-A_{C P}(\pi \pi) \\
A_{C P}(K K)=A_{\mathrm{raw}}(K K)-A_{\mathrm{raw}}\left(K^{-} \pi^{+}\right)+A_{D}\left(K^{-} \pi^{+}\right)
\end{gathered}
$$

$A_{C P}(\pi \pi)=A_{C P}(K K)-\Delta A_{C P}$, Accounting for Correlation
Final Result: Weighted Average of $2011+2012$

Neutral Kaon Asymmetry, $A_{D}\left(K^{0}\right)$

- Detect K_{S}^{0}, dominated by decay to $\pi \pi$
- Need to describe mixing, CPV and absorption in detector
- Calculate by dividing into steps using LHCb Material Map and

- VELO+T+TT, 2011+2012: result, 2012 T+TT: systematic
- Includes overall shift to account for $A_{P}\left(D^{+}\right)$and $A_{\text {Tracking }}(\pi)$

$$
A_{D}\left(K^{0}\right)=(0.054 \pm 0.014(\text { syst })) \%
$$

$A_{D}\left(K^{-} \pi^{+}\right)$

- Have all the info to calculate $A_{D}\left(K^{-} \pi^{+}\right)$

Asymmetry	Magnet Up [\%]	Magnet Down [\%]	Mean [\%]
$A_{D}\left(\bar{K}^{0}\right)$	-0.054 ± 0.014	-0.054 ± 0.014	-0.054 ± 0.014
$A_{\text {raw }}\left(K^{-} \pi^{+} \pi^{+}\right)$	-1.969 ± 0.033	-1.672 ± 0.032	-1.827 ± 0.023
$A_{\text {raw }}\left(\bar{K}^{0} \pi^{+}\right)$	-0.94 ± 0.17	-0.51 ± 0.16	-0.71 ± 0.12
$A_{D}\left(K^{-} \pi^{+}\right)$	-1.08 ± 0.17	-1.22 ± 0.16	-1.17 ± 0.12

- Driven by different $\sigma_{\text {Interaction }}(K)$ in matter
- Decreases with increasing $p(K)$, as expected

μ Mistag Probability

- No handle on $m(B) \rightarrow$ possible μ mis-id
- Dilutes observed asymmetry
$\Delta A_{C P}=(1+2 \omega)\left[A_{\text {raw }}(K K)-A_{\text {raw }}(\pi \pi)\right]$
$A_{C P}(K K)=$
$(1+2 \omega)\left[A_{\text {raw }}(K K)-A_{\text {raw }}(K \pi)\right]+(1-2 R) A_{D}(K \pi)$

- $R=\left(R^{+}+R^{-}\right) / 2$
$=(0.389 \pm 0.003) \%$, from Mixing/CPV, time integrated
- Extract with $D^{0} \rightarrow K^{-} \pi^{+}$, take CPV/Mixing into account
- Cross Check with $B \rightarrow \mu\left(D^{*} \rightarrow D^{0} \pi_{s}\right) X$
 subsample

$$
\begin{gathered}
\omega\left(\Delta A_{C P}\right)=(0.988 \pm 0.006) \% \\
\omega\left(A_{C P}\left(K^{-} K^{+}\right)\right)=(0.791 \pm 0.006) \% \\
\hline
\end{gathered}
$$

A. Davis

NEW LHCb-PAPER-2014-013 (in prep.) 2011+2012 Dataset

(Preliminary) Results

	Magnet Up[\%]	Magnet Down[\%]	Mean[\%]
$A_{\text {raw }}\left(K^{-} K^{+}\right)$	-0.46 ± 0.11	-0.43 ± 0.11	-0.44 ± 0.08
$A_{\text {raw }}\left(\pi^{-} \pi^{+}\right)$	-0.45 ± 0.20	-0.66 ± 0.19	-0.58 ± 0.14
$\Delta A_{C P}$	-0.01 ± 0.23	$+0.24 \pm 0.22$	0.14 ± 0.16
$A_{\text {raw }}\left(K^{-} K^{+}\right)$	-0.45 ± 0.12	-0.41 ± 0.12	-0.43 ± 0.08
$A_{\text {raw }}\left(K^{-} \pi^{+}\right)$	-1.41 ± 0.05	-1.59 ± 0.05	-1.51 ± 0.04
$A_{D}\left(K^{-} \pi^{+}\right)$	-1.08 ± 0.07	-1.22 ± 0.16	-1.17 ± 0.12
$A_{C P}\left(K^{-} K^{+}\right)$	-0.09 ± 0.21	-0.01 ± 0.21	-0.06 ± 0.15

Source of Uncertainty	$\Delta A_{C P}$	$A_{C P}\left(K^{-} K^{+}\right)$
Production Asymmetry:		
\quadDifference in b-hadron mixture	0.02%	0.02%
\quad Difference in B decay time acceptance	0.02%	0.02%
Production and Detection Asymmetry: \quad Different weighting	0.02%	0.05%
\quad Non-cancellation	-	0.03%
\quadNeutral kaon asymmetry Background from real D^{0} mesons: \quad Mistag asymmetry Background from fake D^{0} mesons: $\quad D^{0}$ mass fit model $\quad 0.03 \%$ \quad Wrong background modeling	0.06%	0.03%
Quadratic Sum	0.03%	0.06%

$$
\begin{gathered}
\Delta A_{C P}=(+0.14 \pm 0.16 \pm 0.08) \% \\
\hline A_{C P}\left(K^{-} K^{+}\right)=(-0.06 \pm 0.15 \pm 0.10) \% \\
\rho=0.28 \\
\hline A_{C P}\left(\pi^{-} \pi^{+}\right)=(-0.20 \pm 0.19 \pm 0.10) \% \\
\text { Consistent with CP Conservation }
\end{gathered}
$$

Semileptonic $\Delta A_{C P}$ Calculation of Asymmetries

- All production/detector asymmetries must cancel
- Reweight Kinematic distributions to remove residual production/detector asymmetries
- Weight D^{0} (p_{T} and η) distributions of $K K$ to match $\pi \pi$ $\rightarrow 8 \%$ reduction in statistical power
- Additional reweighting for $A_{C P}(K K)$ to cancel D^{+}asymmetries
- $A_{D}(\mu), A_{P}(B): D^{0} \rightarrow K \pi\left(p_{T}, \eta\right)$ reweighted to match $D^{0} \rightarrow K K$
$\rightarrow 3 \%$ further reduction
- $A(K \pi): D^{+} \rightarrow K \pi \pi\left(p_{T}, \eta\right)$ reweighted to match $D^{0} \rightarrow K \pi$ \rightarrow No loss of power due to high stats
- Residual $A\left(D^{+}\right), A(\pi): D^{+} \rightarrow \bar{K}^{0} \pi^{+}, D^{+}$and $\pi^{+}\left(p_{T}, \eta\right)$ reweighted to match $D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$
$\rightarrow 77 \%$ reduction in statistical power
- Needed to ensure full cancellation of detector/production asymmetries

