

Probing Radiative Neutrino Mass Generation through Monotop Production

Alejandro de la Puente

TRIUMF, Theory Group

PHENO 2014 Symposium
University of Pittsburgh
May 5th, 2014

Based on arXiv:1307.2606 and arXiv:1404.1415 in collaboration with John Ng.

Outline

- Motivation
- Model
 - Dark Matter
 - Neutrinos masses
- Constraints
- Monotop Probe
- Summary

Motivation

- Two important questions in the field of High Energy physics:
- Neutrino mass generation.
- Nature of Dark Matter.
- Cosmological results based on Planck's measurements of the CMB:
- $\Omega_c h^2 = 0.1199 \pm 0.0027$
- $\sim N_{eff} = 3.30 \pm 0.27$ Planck Collaboration arXiv:1303.5076

• Introduce a model of physics beyond the Standard Model which can naturally generate small neutrino masses while providing a viable candidate for the dark matter present in our universe.

Model

• Use the top quark as a dark portal and for neutrino mass generation:

Dark Matter:

- Extension of the Standard Model:
 - Z₂ yields a viable dark matter candidate.

$$\mathcal{L}_{BSM} = \sum_{i=u,c,t} y_{\psi}^{u_i} \bar{u}_i P_L N^c \psi + \text{ h.c.}$$

Y. Bai and J. Berger

S. Chang, R. Edezhath, J. Hutchinson, and M. Luty

H. An, L. -T. Wang and H. Zhang

A. DiFranzo, K. I. Nagao, A. Rajaraman, and T. M. P. Tait

M. Garny, A. Ibarra, S. Rydbeck, and S. Vogl

 $N: (\mathbf{1},\mathbf{1},\mathbf{0})$

 $\psi: ({f 3},{f 1},{f 2}/{f 3})$

Dark Matter:

- Extension of the Standard Model:
 - ullet Z₂ yields a viable dark matter candidate: $M_{N_R} < m_\psi$
 - Annihilation only into lights quarks is p-wave suppressed.
 - Non-zero coupling to the top quark leads to an s-wave contribution.

• Co-annihilation effects can be safely neglected:

$$N_R \psi^{\dagger} \to u/c/t \ g, \ \psi \psi^{\dagger}$$

Direct Detection:

- Majorana fermion has chiral symmetric interactions:
- Scattering is dominated by spin dependent interactions.

$$\mathcal{M} = \frac{(y_{\psi}^{u})^{2}}{4(m_{\psi}^{2} - M_{N_{R}}^{2})} \bar{N}_{R} \gamma^{\mu} \gamma^{5} N_{R} \left\langle \bar{u} \gamma_{\mu} \gamma^{5} u \right\rangle$$

- Conserved \mathbb{Z}_2 prevents Dirac neutrino mass terms for the active neutrinos.
 - Incorporate two coloured electroweak-triplet scalars.

$$\chi = \begin{pmatrix} \chi_2/\sqrt{2} & \chi_1 \\ \chi_3 & -\chi_2/\sqrt{2} \end{pmatrix} : (\mathbf{3}, \mathbf{3}, -\mathbf{1}/\mathbf{3})$$

$$\omega = \begin{pmatrix} \omega_2/\sqrt{2} & \omega_1 \\ \omega_3 & -\omega_2/\sqrt{2} \end{pmatrix} : (\mathbf{3}, \mathbf{3}, \mathbf{2}/\mathbf{3})$$

- Conserved Z₂ prevents Dirac neutrino mass terms for the active neutrinos.
 - Incorporate two coloured electroweak-triplet scalars.

$$\mathcal{L}_{BSM} = \sum_{i=u,c,t} y_{\psi}^{u_i} \bar{u}_i P_L N^c \psi + \sum_{\ell=e,\mu,\tau} \left\{ \lambda_{\ell} \left[\bar{t} P_R \left(\chi_1 \nu_{\ell}^c + \chi_2 \ell^c \right) + \bar{b} P_R \left(\chi_3 \ell^c - \chi_2 \nu_{\ell}^c \right) \right] \right\} + \frac{1}{2} M_{N_R} \bar{N}^c N + \text{h.c.}$$

$$V(H,\psi,\chi,\omega) = -\mu^2 H^{\dagger} H + \frac{\lambda}{4!} (H^{\dagger} H)^2 + m_{\chi}^2 Tr \left(\chi^{\dagger} \chi \right) + m_{\omega}^2 Tr \left(\omega^{\dagger} \omega \right) + m_{\psi}^2 \psi^{\dagger} \psi + \lambda_{\chi} \left(Tr \chi^{\dagger} \chi \right)^2 + \lambda_{\omega} (Tr \omega^{\dagger} \omega)^2 + \lambda_{\psi} \left(\psi^{\dagger} \psi \right)^2 + \kappa_1 H^{\dagger} H \left(Tr \chi^{\dagger} \chi \right) + \kappa_2 H^{\dagger} \chi^{\dagger} \chi H + \kappa_3 H^{\dagger} H \psi^{\dagger} \psi + \kappa_4 H^{\dagger} H Tr \omega^{\dagger} \omega + \kappa_5 H^{\dagger} \omega^{\dagger} \omega H + \rho_1 \left(Tr \chi^{\dagger} \chi \right) \psi^{\dagger} \psi + \rho_2 \left(Tr \omega^{\dagger} \omega \right) \psi^{\dagger} \psi + \rho_3 Tr \left(\omega^{\dagger} \psi \omega^{\dagger} \psi \right) + \alpha Tr H^T \sigma_2 \chi \omega^{\dagger} H + \tilde{V}(\chi,\omega) + \text{h.c.}$$

• Conserved \mathbb{Z}_2 prevents Dirac neutrino mass terms for the active neutrinos.

- Conserved Z₂ prevents Dirac neutrino mass terms for the active neutrinos.
 - Incorporate two coloured electroweak-triplet scalars.

$$\mathcal{L}_{BSM} = \sum_{i=u,c,t} y_{\psi}^{u_i} \bar{u}_i P_L N^c \psi + \sum_{\ell=e,\mu,\tau} \left\{ \lambda_{\ell} \left[\bar{t} P_R \left(\chi_1 \nu_{\ell}^c + \chi_2 \ell^c \right) + \bar{b} P_R \left(\chi_3 \ell^c - \chi_2 \nu_{\ell}^c \right) \right] \right\} + \frac{1}{2} M_{N_R} \bar{N}^c N + \text{ h.c.}$$

$$V(H,\psi,\chi,\omega) = -\mu^2 H^{\dagger} H + \frac{\lambda}{4!} (H^{\dagger} H)^2 + m_{\chi}^2 Tr \left(\chi^{\dagger} \chi \right) + m_{\omega}^2 Tr \left(\omega^{\dagger} \omega \right) + m_{\psi}^2 \psi^{\dagger} \psi + \lambda_{\chi} \left(Tr \chi^{\dagger} \chi \right)^2 + \lambda_{\omega} (Tr \omega^{\dagger} \omega)^2 + \lambda_{\psi} \left(\psi^{\dagger} \psi \right)^2 + \kappa_1 H^{\dagger} H \left(Tr \chi^{\dagger} \chi \right) + \kappa_2 H^{\dagger} \chi^{\dagger} \chi H + \kappa_3 H^{\dagger} H \psi^{\dagger} \psi + \kappa_4 H^{\dagger} H Tr \omega^{\dagger} \omega + \kappa_5 H^{\dagger} \omega^{\dagger} \omega H + \rho_1 \left(Tr \chi^{\dagger} \chi \right) \psi^{\dagger} \psi + \rho_2 \left(Tr \omega^{\dagger} \omega \right) \psi^{\dagger} \psi + \rho_3 Tr \left(\omega^{\dagger} \psi \omega^{\dagger} \psi \right) + \alpha Tr H^T \sigma_2 \chi \omega^{\dagger} H + \tilde{V}(\chi,\omega) + \text{ h.c.}$$

$$(M_{\nu})_{\ell\ell'} = \sum_{i,j} K^{ij} \lambda_{\ell}^{i} \lambda_{\ell'}^{j}$$

$$K^{ij} = \frac{y_{\psi}^{i} y_{\psi}^{j} \rho}{(16\pi^{2})^{3}} \frac{m_{i} m_{j} M_{N_{R}}}{(m_{\chi}^{2} - m_{i}^{2})(m_{\chi}^{2} - m_{j}^{2})} I(m_{\chi}^{2}, m_{\psi}^{2}, m_{i}^{2}, m_{j}^{2}),$$

$$(M^{\nu})$$

$$(M^{\nu})_{ll'} = \sum_{i,j} K^{i,j} \lambda_l^i \lambda_{l'}^j$$

Constraints

• Rare muon and b decays: Sensitive to coloured electroweak-triplets.

$$\mathcal{L}_{BSM} = \sum_{i=u,c,t} y_{\psi}^{u_i} \bar{u}_i P_L N^c \psi + \sum_{\ell=e,\mu,\tau} \left\{ \lambda_{\ell} \left[\bar{t} P_R \left(\chi_1 \nu_{\ell}^c + \chi_2 \ell^c \right) + \bar{b} P_R \left(\chi_3 \ell^c - \chi_2 \nu_{\ell}^c \right) \right] \right\} + \text{ h.c.}$$

$$Br(\mu \to e\gamma) = 7.2 \times 10^{-6} \left(\frac{m_{e\mu}}{K^{t,t}}\right)$$

 $m_{e\mu} = 1.5 - 8.8 \text{ meV}$

arXiv:1107.5547

• D meson oscillations:

$$\Delta M_D = \frac{\left(y_\psi^u y_\psi^c\right)^2 f_D M_D}{64\pi^2 m_\psi} \frac{2}{3} B_D \beta(m_c, m_{m_\psi}) |L(\eta)|$$
• $x_D = \frac{\Delta M_D}{\Gamma_D} = 0.43^{+0.15}_{-0.16}\%$. arXiv:1207.1158

•
$$x_D = \frac{\Delta M_D}{\Gamma_D} = 0.43^{+0.15}_{-0.16}\%$$
 . arXiv:1207.1158

• Collider constraints: SUSY searches (stop pair-production), monojet+MET and jets+MET

• Collider constraints: SUSY searches (stop pair-production), monojet+MET and jets+MET

Monotop probe

• Single top quark production in association with missing energy (MET) at the LHC.

• Apply search strategy for the semi-leptonic decay modes of the top quark at 8 and 14 TeV.

Semi-leptonic mode signal 8 TeV:

$$t + N_R N_R \rightarrow b l \nu + N_R N_R$$

- Main Backgrounds:
 - ullet $tar{t}$
 - tj + tW
 - $\bullet Wj$ and Zj
 - Di-boson
 - Less likely to be contaminated by QCD multijet background. Little contamination from misreconstructed jet (p_T cut).

Semi-leptonic mode signal 8 TeV:

$$t + N_R N_R \rightarrow b l \nu + N_R N_R$$

- Pre-selection:
 - Require events with a lepton: $p_T > 20 \text{ GeV}, \ |\eta| < 2.5$
 - Require one b-jet to with $p_T>20~{
 m GeV},~|\eta|<2.5$.
 - At most one light jet.

arXiv:1310.7600

Semi-leptonic mode sig

200

Two signal regions defined by the amount of M_{ψ} (GeV) missing energy and the transverse mass of the charged lepton, M_{T} , to probe the small and large m_{ψ} regions.

 $s_1: m_{\psi} = 150 \text{ GeV}, M_{N_R} = 80 \text{ GeV}$

200

100

 $s_2: m_{\psi} = 700 \text{ GeV}, M_{N_R} = 210 \text{ GeV}$

Semi-leptonic mode signal 8 TeV (20 fb⁻¹):

ZZ

SM background	$N^{E>90 \text{ GeV}, M_T>110 \text{ GeV}} (\sigma \text{ [pb]})$	$N^{E>200 \text{ GeV}, M_T>120 \text{ GeV}} (\sigma \text{ [pb]})$
$W (\to l\nu) + \text{jets}$	212 (0.011)	$< 7 \ (< 3.41 \times 10^{-4})$
Z+ jets	$< 3 (< 1.54 \times 10^{-4})$	$< 3 (< 1.54 \times 10^{-4})$
$t\bar{t}$ + jets	1327 (0.066)	$49 (2.46 \times 10^{-3})$
t j + t W	242 (0.012)	$2(/115 \times 10^{-4})$
WW	$2(1.15 \times 10^{-4})$	
WZ	$1 (6.86 \times 10^{-5})$	Missing energy from

*** $(< 7.94 \times 10^{-6})$

• Missing energy from misreconstructed jets.

Semi-leptonic mode signal 8 TeV (20 fb⁻¹):

• However, for large collider energies, a large MET cut is necessary.

Process	σ [pb]
W + jets	2.19×10^5
Z+ jets	6.66×10^4
$t\bar{t}$ + jets	1052.93
tj+tW	347.42
WW	119.84
WZ	48.87
ZZ	17.09

 $y_{\psi}^{t} = 1, \ y_{\psi}^{u} = 0.5, \ m_{\psi} = 700 \text{ GeV}, \ M_{N_R} = 210 \text{ GeV}$

\mathcal{L} [fb ⁻¹]	$\sigma (t\bar{t} + \text{jets}) \text{ [pb]}, N$	$\sigma(tj + tW)$ [pb], N	$\sigma_{signal}[pb], N$
30	$6.31 \times 10^{-3}, 189$	$1.39 \times 10^{-3}, 42$	$6.85 \times 10^{-4}, 21$
300	1892	417	205

• MET > 200 GeV, $M_T > 120$ GeV and $p_{T,j} < 120$ GeV

Semi-leptonic mode signal 14 TeV:

Summary

- A weakly interacting massive particle is still a very attractive candidate to address the nature of dark matter.
- We must use not only astrophysical resources to address the nature of dark matter but the power of hadron colliders.
- The existence of dark matter may be inferred through exotic processes as well as properties of SM particles.
- Next run at the LHC may begin to probe monotop production.
- It may lead to evidence of the underlying mechanism the bestows neutrinos with mass.

Dark matter - nucleon scattering: $y_{\psi}^{u}=0.5$

protons

neutrons

$$\rho = 0.1, \ m_{\chi} = 1 \ \mathrm{TeV}$$

$$y_{\psi}^{t} \approx 1$$

$$y_{\psi}^{t} \approx 0$$