DARK MATTER IN SUSY DFSZ AXION MODEL

Kyu Jung Bae,

Department of Physics and Astronomy, University of Oklahoma

> based on KJB, Baer, Chun 1309.0515, 1309.5365 KJB, Baer, Lessa, Serce, in progress

> > Pheno2014@Pittsburgh May 5, 2014

OVERVIEW

SUSY & PQ

Fine-tuning problems in SM:

- quadratic divergence: $\Delta m_h^2 = \Lambda_{\mathrm{cut-off}}^2 + \cdots$ removed by SUSY
- Strong CP problem: $\bar{\theta}G\tilde{G}\Rightarrow\left(\bar{\theta}+\frac{a}{f_a}\right)G\tilde{G}\Rightarrow\left\langle\frac{a}{f_a}\right\rangle=-\bar{\theta}$ axion

SUSY axion

SUSY partner saxion, axino:

- thermal production: scattering, decay & inverse decay
- late decay: might decay after neutralino freeze-out

affects the neutralino density — augmented WIMP density also axion CDM two DM scenario

DFSZ AXION MODFI

Effective Interaction:

$$W = Z(XY - v_{PQ}^{2}) + \frac{X^{2}}{M_{P}} H_{u} H_{d}$$

$$X = (v_{PQ} + \rho_{1}) e^{A/v_{PQ}}, \quad Y = (v_{PQ} + \rho_{1}) e^{-A/v_{PQ}}, \quad Z = \rho_{2}$$

$$W_{\rm eff} = \mu e^{2A/v_{PQ}} H_u H_d$$
 $\mu \sim v_{PQ}^2/M_P$ Kim-Nilles mechanism

$$\mu \sim v_{PQ}^2/M_P$$

Interactions via Higgs sector:

- AHH trilinear int.
- mixing with higgs & higgsino

Production of axino/saxion:

scattering/decay/inverse-decay of particles in thermal equilibrium:

Chun; KJB, Choi, Im; KJB, Chun, Im "Freeze-In" 10^{3} 10⁹ 10⁵ 10^7 10¹¹ HHequilibrium 10⁻² 10^{-2} \tilde{H} 10^{-4} 10^{-4} $v_{PQ} \!=\! 10^{11}~\text{GeV}$ $Y_{\tilde{a}}$ \tilde{H} 10^{-6} 10^{-6} $v_{PQ} \!=\! 10^{12} \text{ GeV}$ H 10^{-8} 10^{-8} $v_{PQ} \!=\! 10^{13} \text{ GeV}$ μ =1 TeV 10⁵ 10^{3} 10^7 10¹¹ 10⁹

T_R in GeV

KJB, Baer, Chun

Decay of axino: $T_D^{\tilde{a}} = \mathcal{O}(10^{-4}) - \mathcal{O}(10^4) \text{ GeV}$

- 1) rad
- 2) neutralino
- 3) axion TP
- 4) axion CO
- 5) saxion TP
- 6) saxion CO
- 7) axino
- 8) gravitino

$$\frac{dn_i}{dt} + 3Hn_i = \langle \sigma v \rangle (\bar{n}_i^2 - n_i^2)$$

$$- \Gamma_i m_i \frac{n_i}{\rho_i} \left(n_i - \bar{n}_i \sum_{i \to \cdots} B_{ab} \dots \frac{n_a n_b \cdots}{\bar{n}_a \bar{n}_b \cdots} \right)$$

$$+ \sum_a \Gamma_a B_i m_a \frac{n_a}{\rho_a} \left(n_a - \bar{n}_a \sum_{a \to i \cdots} \frac{B_{ib} \dots}{B_i} \frac{n_i n_b \cdots}{\bar{n}_i \bar{n}_b \cdots} \right)$$

- 1) rad
- 2) neutralino
- 3) axion TP
- 4) axion CO
- 5) saxion TP
- 6) saxion CO
- 7) axino
- 8) gravitino

$$\frac{dn_i}{dt} + 3Hn_i = \left(\sigma v \right) (\bar{n}_i^2 - n_i^2)
- \Gamma_i m_i \frac{n_i}{\rho_i} \left(n_i - \bar{n}_i \sum_{i \to \cdots} B_{ab \cdots} \frac{n_a n_b \cdots}{\bar{n}_a \bar{n}_b \cdots} \right)
+ \sum_a \Gamma_a B_i m_a \frac{n_a}{\rho_a} \left(n_a - \bar{n}_a \sum_{a \to i \cdots} \frac{B_{ib \cdots}}{B_i} \frac{n_i n_b \cdots}{\bar{n}_i \bar{n}_b \cdots} \right)$$

- 1) rad
- 2) neutralino
- 3) axion TP
- 4) axion CO
- 5) saxion TP
- 6) saxion CO
- 7) axino
- 8) gravitino

$$\frac{dn_i}{dt} + 3Hn_i = \langle \sigma v \rangle (\bar{n}_i^2 - n_i^2)$$

$$-\left(\Gamma_i m_i \frac{n_i}{\rho_i} \left(n_i - \bar{n}_i \sum_{i \to \cdots} B_{ab \cdots} \frac{n_a n_b \cdots}{\bar{n}_a \bar{n}_b \cdots} \right) \right)$$

$$+ \sum_a \Gamma_a B_i m_a \frac{n_a}{\rho_a} \left(n_a - \bar{n}_a \sum_{a \to i \cdots} \frac{B_{ib \cdots}}{B_i} \frac{n_i n_b \cdots}{\bar{n}_i \bar{n}_b \cdots} \right)$$

- 1) rad
- 2) neutralino
- 3) axion TP
- 4) axion CO
- 5) saxion TP
- 6) saxion CO
- 7) axino
- 8) gravitino

$$\frac{dn_i}{dt} + 3Hn_i = \langle \sigma v \rangle (\bar{n}_i^2 - n_i^2)
- \Gamma_i m_i \frac{n_i}{\rho_i} \left(n_i - \bar{n}_i \sum_{i \to \cdots} B_{ab \cdots} \frac{n_a n_b \cdots}{\bar{n}_a \bar{n}_b \cdots} \right)
+ \left(\sum_a \Gamma_a B_i m_a \frac{n_a}{\rho_a} \left(n_a - \bar{n}_a \sum_{a \to i \cdots} \frac{B_{ib \cdots}}{B_i} \frac{n_i n_b \cdots}{\bar{n}_i \bar{n}_b \cdots} \right) \right)$$

- 1) rad
- 2) neutralino
- 3) axion TP
- 4) axion CO
- 5) saxion TP
- 6) saxion CO
- 7) axino
- 8) gravitino

$$\frac{dn_i}{dt} + 3Hn_i = \langle \sigma v \rangle (\bar{n}_i^2 - n_i^2)$$

$$- \Gamma_i m_i \frac{n_i}{\rho_i} \left(n_i - \bar{n}_i \sum_{i \to \cdots} B_{ab} \dots \frac{n_a n_b \cdots}{\bar{n}_a \bar{n}_b \cdots} \right)$$

$$+ \sum_a \Gamma_a B_i m_a \frac{n_a}{\rho_a} \left(n_a - \bar{n}_a \sum_{a \to i \cdots} \frac{B_{ib} \dots}{B_i} \frac{n_i n_b \cdots}{\bar{n}_i \bar{n}_b \cdots} \right)$$

- 1) rad
- 2) neutralino
- 3) axion TP
- 4) axion CO
- 5) saxion TP
- 6) saxion CO
- 7) axino
- 8) gravitino

$$\frac{dn_i}{dt} + 3Hn_i = \langle \sigma v \rangle (\bar{n}_i^2 - n_i^2)$$

$$-\Gamma_{i} m_{i} \frac{n_{i}}{\rho_{i}} \left(n_{i} - \bar{n}_{i} \sum_{i \to \cdots} B_{ab \cdots} \frac{n_{a} n_{b} \cdots}{\bar{n}_{a} \bar{n}_{b} \cdots} \right)$$

$$+\sum_{a}\Gamma_{a}B_{i}m_{a}\frac{n_{a}}{\rho_{a}}\left(n_{a}-\bar{n}_{a}\sum_{a\to i\cdots}\frac{B_{ib\cdots}}{B_{i}}\frac{n_{i}n_{b}\cdots}{\bar{n}_{i}\bar{n}_{b}\cdots}\right)$$

$$\frac{d\rho_i}{dt} + 3H(\rho_i + P_i) = \langle \sigma v \rangle \frac{\rho_i}{n_i} (\bar{n}_i^2 - n_i^2)$$

$$-\Gamma_{i}m_{i}\left(n_{i}-\bar{n}_{i}\sum_{i\to\cdots}B_{ab\cdots}\frac{n_{a}n_{b}\cdots}{\bar{n}_{a}\bar{n}_{b}\cdots}\right)$$

$$+\sum_{a}\Gamma_{a}B_{i}\frac{m_{a}}{2}\left(n_{a}-\bar{n}_{a}\sum_{a\to i\cdots}\frac{B_{ib\cdots}}{B_{i}}\frac{n_{i}n_{b}\cdots}{\bar{n}_{i}\bar{n}_{b}\cdots}\right)$$

EVOLUTION

EVOLUTION

COMMENTS ON BICEP2

BICEP2 result:

$r\sim0.16$ with $H_1\sim10^{14}$ GeV implies

I) PQ broken during & after inflation ($f_a > H_I$):

Marsh, Grin, Hlozek, Ferreira; Visinelli, Gondolo

massless axion - isocurvature perturb.

$$\mathcal{P}_a \sim 4 \left(\frac{\Omega_a}{\Omega_{CDM}}\right)^2 \left(\frac{H_I}{2\pi f_a \theta_i}\right)^2 \lesssim 0.04 \mathcal{P}_{\mathcal{R}}$$

Planck 2013

$$f_a \gtrsim 10^{28} \text{ GeV} \times \left(\frac{\Omega_a h^2}{0.12}\right)^{1.22}$$

2) PQ restored after inflation ($f_a < H_I$):

no isocurvature perturb.

domain wall problem arises, N_{DW}=6 for DFSZ

Possoble solutions:

1) Explicit PQ breaking during inflation: Higaki, Jeong, Takahashi

massive axion — no isocurvature perturb.

$$m_a^2(t=t_I) \sim H_I^2$$

2) PQ scale during inflation : $f_a(t_I) \gg f_a(t_0)$ Choi, Jeong, Seo; Chun

$$f_a(t_I) \sim (H_I M_P^n)^{1/(n+1)}$$

$$\frac{\mathcal{P}_a}{\mathcal{P}_{\mathcal{R}}} \sim \left(\frac{H_I}{2\pi f_a(t_I)}\right)^2 \ll \left(\frac{H_I}{2\pi f_a(t_0)}\right)^2$$

SUMMARY

- SUSY axion models solves 2 fine-tuning problems in SM.
- DFSZ realization provides mu-term solution and effective interactions of axion sector.
- For small $f_a < 10^{11}$ GeV, axion is dominant DM, while for $f_a > 10^{11}$ GeV, DM is a mixture of axion & neutralino.
- BICEP2 constrains DFSZ axion models but can be avoided in the extension of PQ sector.