#### Cosmology: dark energy and beyond

Bhuvnesh Jain
University of Pennsylvania

References: Snowmass reports

Kim et al, arXiv: 1309.5382

Huterer et al, arXiv: 1309.5358

BJ et al, arXiv:1309.5389

See talks by Kosowski, Kusenko, Pryke
Talk to Pitt Cosmologists!

#### **Outline**

- Cosmological observations: CMB to galaxy surveys
- Beyond dark energy
- Tests of gravity from mm to Gpc scales
- Discovery space for the future

#### Cosmology probes: geometry and growth

- Geometry: Distance-Redshift relation D(z), Expansion rate H(z)
- Growth: Fluctuations in temperature, mass, gas and galaxies



- Features in the fluctuation power spectrum
  - Tilt (inflation), locations of peaks (geometry), damping tail (neutrinos)
- Low-z/late time universe has several probes of geometry and growth
  - Combining CMB with late time data provides huge lever arm in scale and time: tests of inflation, dark energy, massive neutrinos, dark sector interactions



## Cosmology probes: late times

| Probe                                                | Physical Observable                   | Sensitivity to Dark<br>Energy or Modified<br>Gravity |
|------------------------------------------------------|---------------------------------------|------------------------------------------------------|
| Weak Lensing                                         | Coherent distortions in galaxy shapes | Geometry and growth of structure (projected)         |
| Large-Scale Structure (BAO)                          | Power spectrum of galaxy distribution | Geometry and Growth                                  |
| Galaxy Clusters                                      | Abundance of massive clusters         | Geometry and Growth                                  |
| Type la Supernovae                                   | Fluxes of standard candles            | Geometry: Distance-<br>redshift relation             |
| Strong lensing, Lyman-<br>alpha, 21cm, and<br>others | Time delays, power spectra            | Geometry and growth                                  |





#### Current results: geometry





- Distance-redshift relation from SN and BAO
- Consistent with Lambda-CDM

#### Current results: growth of structure



- Growth of structure: BOSS, CFHLS, Planck and SPT data (also galaxy clusters)
- CMB+late universe: consistent with inflationary fluctuations
- But...amplitude at late times lower than inferred from CMB

### Energy budget over cosmic time





#### **Neutrinos**





 $\Sigma m_{v} > 0$ 

Sum of the neutrino masses impacts growth of large scale structure, i.e., the matter power spectrum Probed by CMB lensing

## Multi-component dark matter and neutrinos

- Neutrinos as a known hot component of dark matter
- Changes matter-radiation equality: impact on CMB
- Suppress growth of structure in a scale dependent way
- Note: Data also sensitive to other features in primordial power spectrum.



## Multi-component dark matter and neutrinos

- Neutrinos as a known hot component of dark matter
- Changes matter-radiation equality: impact on CMB
- Suppress growth of structure in a scale dependent way
- Note: Data also sensitive to other features in primordial power spectrum.



### (Mild) tension in cosmology data



Extrapolation from CMB to Present disagrees with low-z measurements

#### (Mild) tension in cosmology data

- BICEP2
- CMB vs low-z measurements of H<sub>0</sub>
- Amplitude of fluctuations

#### Resolution?

- Tilt+running of primordial spectral index,
- evolving dark energy,
- sterile neutrinos,
- 55

2-3 theory papers per day since BICEP2 -> we need more data!

#### Dark Energy Survey: 150 sq deg mass map

- Convergence map from DES: largest mass map to date
- Overlaid with with galaxy clusters
- Preliminary!



Vikram, Chang, BJ, Bacon and the DES collaboration, in prep.



#### **Beyond Lambda**



- Is dark energy constant in redshift?
- Is dark energy spatially clustered or anisotropic?
- Are there couplings between dark energy, dark matter, baryons?
- Is it dark energy or modified gravity?

#### New degrees of freedom in the universe

- Theorem: Cosmological constant is the `unique' large distance modification to GR that does not introduce any new degrees of freedom
- Dynamical models of Dark Energy or Modified Gravity invoke new degrees of freedom (also arise in string theory, higher dimension theories...).
- Modified gravity (MG) theories typically invoke a scalar field coupled non-minimally to gravity. The scalar enhances the gravitational potential
   observable effects on all scales, mm to Gpc!
- Dark energy and dark matter can also directly couple to standard model particles, leading to other 5<sup>th</sup> force-like effects.

### Modified gravity and scalar fields

- Consider a scalar  $\phi = \phi_b + \delta \phi$  coupled to the energy density  $\rho$ .
- Since it is light, the long range, scalar force inside the solar system must be suppressed to satisfy tests of the equivalence principle and GR.
- In the last decade, some natural ways to achieve this have been realized by theories designed to produce cosmic acceleration.
- The generic form of the equation of motion for  $\delta \phi$  is:

$$Z(\phi_b,\rho_b) \begin{bmatrix} \frac{d^2\delta\phi}{dt^2} - c_s^2 \frac{d^2\delta\phi}{dx^2} \end{bmatrix} + m^2(\phi_b,\rho_b)\delta\phi = \beta(\phi_b,\rho_b)G_{\mathrm{Newton}}\delta\rho$$
 kinetic term mass term coupling to matter (range of interaction)

### Screening: how to hide enhanced gravity

$$\delta F \approx \frac{M_a M_b G}{r^2} \frac{\beta^2(\phi_b, \rho_b)}{\sqrt{Z}(\phi_b, \rho_b) c_s(\phi_b, \rho_b)} \exp(-m(\phi_b, \rho_b)r)$$

To keep force enhancement small, this term must be small. Only 3 options!

- (a) Coupling **\beta** is small (Symmetron)
- (b) Mass *m* is large (Chameleon)
- (c) Kinetic term **Z** is large (Vainshtein)
- The three mechanisms of screening lead to distinct observable effects as one transitions from MG on large scales to GR well inside galaxies.
- A successful MG theory must incorporate a screening mechanism we can pursue observable effects even before theorists agree on a theory!
- The parameters that observations constrain:
  - coupling  $\beta$  & mass m (the range of the scalar force  $\lambda$ )

### Signatures of modified gravity

#### how cosmological effects show up in galaxies

 Unscreened environments in the universe will show these signatures of gravity: from cosmological scales to nearby galaxies

$$ds^{2} = -(1 + 2\psi)dt^{2} + (1 - 2\phi)a^{2}(t)d\mathbf{x}^{2}$$

- GR: Ψ=Φ. MG: Ψ≠Φ.
- Generically extra scalar field enhances forces on stars and galaxies
  - acceleration =  $-\nabla \Psi = -\nabla (\Psi_S + \Psi_N)$
  - This enhances effective G & velocities by ~10%
- Photons respond to the sum  $(\Psi + \Phi)$  which is typically unaltered
  - Dynamical masses are larger than Lensing (true) masses

#### **Modified Gravity**

#### Stars, gas and dark matter

- Enhanced forces can alter the luminosities, colors and ages of stars in unscreened galaxies.
  - Pulsating giant stars may feel higher G<sub>eff</sub>: faster pulsations are detectable *Chang & Hui 2010; Davis et al 2011; BJ, Vikram, Cabre 2012*
- Dark matter and gas clouds are diffuse -> should feel the fifth/scalar force if their host galaxy is unscreened.
  - Stars rotate slower and separate from gas due to external forces
  - Black holes and stars may also separate in some scenarios *Hui, Nicolis & Stubbs 2009*; *BJ & VanderPlas 2011*; *Hui &Nicolis 2012*

# Astrophysical and cosmological probes of gravity





Dynamical probes (blue) measure Newtonian potential  $\psi$ 

Lensing and ISW (red) measures  $\phi + \psi$ 

Jain & Khoury 2010



### Pulsating stars and nearby distances

- Cepheids are 3-10  $M_{\odot}$  giant stars that pulsate over days to weeks. The period P and luminosity L are tightly related -> distance indicator
  - -Newtonian potential in oscillating envelope of star  $\sim 10^{-7}$
  - $P \sim 1/\sqrt{G\rho}$
  - -Scalar force enhances  $G \rightarrow lowers P \rightarrow underestimate distance$ .
- The peak luminosity at the TRGB (tip of the red giant branch) is nearly universal for 1-2  $M_{\odot}$  stars -> distance indicator
  - Distance estimate is insensitive to gravity theory, and has the opposite change from cepheid distance
- Water masers around SMBHs provide a geometric method: independent of G!

#### **Disk Galaxy Tests**

Initial Disk

t = 0 Gyr

 $cSIS_{4kpc}$ 

t = 3 Gyr



•Enhanced forces between dwarf galaxies can displace stellar disk from halo center

• The gas disk tracks the dark matter halo -> observable offsets

BJ & VanderPlas 2011

### Current limits on gravity theories



- Nearly all these limits have been obtained in the last 5 years.
- A broad class of gravity theories ``ruled out"

#### **Einstein ring test of gravity**



 $\psi/\phi$  = 1.01+/-0.05 from Einstein Rings + velocity dispersion *Bolton et al 2006; Schwab, Bolton, Rappaport 2010* 

A suite of tests on large scales will be carried out with upcoming surveys

### **Discovery Space**

- Cosmic acceleration and fundamental physics motivations implication multiscale tests of dark energy, gravity and dark sector couplings.
- The ``discovery space'' spans:
  - Early universe
  - Evolution of the universe at late times
  - Dark sector interactions