## 2014 Phenomenology Symposium

# Measurement of single top quark production with the ATLAS detector at LHC

Speaker: Jun Su

## University of Pittsburgh, PITT PACC On behalf of the ATLAS collaboration





# Single top quark

- ATLAS has a very rich top quark and heavy flavour physics program.
- The era of precision measurements of its properties has come.
  - High Production cross section at LHC: top quark factory!
  - Precision measurements to test SM prediction at 7 TeV and 8 TeV
- Measurements in single top events
  - Establish production at LHC, precision test of SM electroweak coupling
  - Measure cross-sections to probe  $|V_{tb}|$
  - Top quark polarization/W boson helicity
  - Cross-section of ttbar vs. single top
  - Search FCNC
  - Anomalous couplings
  - W'(tb resonance)
  - search for new particles in single top final state, like  $b^*->Wt$ , mono top, etc

# **Outline**

### Analyses overview

- *t*-channel fiducial cross section @8TeV
- Wt cross section measurement @8TeV
- Top/anti-top quark ratio measurement @7TeV
- FCNC searches @8TeV
- s-channel searches @7TeV
- Anomalous coupling analysis @7TeV









b electroweak interaction.
s-channel

### t-channel fiducial cross-section @ 8 TeV

ATLAS-CONF-2014-007

- **Motivation**: To measure where the detector is sensitive, but also to reduce generator uncertainties due to the extrapolation to the full phase space.
- Selection cuts of the fiducial volume:

Lepton  $P_T > 25 \text{GeV}$  and  $|\eta| < 2.5$ ,  $E_T^{\text{miss}} > 30 \text{ GeV}$ ,  $\Delta R(l,j) > 0.4$ . Jet  $P_T > 30 \text{GeV}$  and  $|\eta| < 4.5$  or > 35 GeV if  $2.75 < |\eta| < 3.5$ ,  $m_T(W) > 50 \text{GeV}$ .

### • Strategy:

Binned likelihood fit to a NN (Neural Network) output to estimate the expected number of single top *t*-channel events.

N<sub>sel.fid</sub>

Measurement of the fiducial cross-section

$$\sigma = \frac{\hat{\nu}}{\epsilon \mathcal{L}} = \frac{1}{\epsilon_{\rm fid}} \frac{\epsilon_{\rm corr, sel}}{\epsilon_{\rm corr, fid}} \frac{\hat{\nu}}{\mathcal{L}} = \frac{1}{\epsilon_{\rm fid}} \sigma_{\rm fid}$$

$$\epsilon = rac{N_{
m sel}}{N_{
m total}}$$
,  $\epsilon_{
m fid} = rac{N_{
m fid}}{N_{
m total}}$   $\epsilon_{
m corr,sel} = rac{N_{
m sel,fid}}{N_{
m sel}}$   $\epsilon_{
m corr,fid} = rac{N_{
m sel,fid}}{N_{
m fid}}$ 

#### Neural Network

– NN is trained with 14 variables ( $|\eta(j)|$ , m(lvb), m(jb), etc.) to separate the *t*-channel signal from background events considering their correlation.

 $N_{\text{total}}$ 

## t-channel fiducial cross-section @ 8TeV

#### ATLAS-CONF-2014-007

#### Results

 A binned likelihood fit is performed on the NN output discriminant distribution to ascertain the signal and background fractions.



 $\sigma_{\rm fid}$ = 3.37 ± 0.05(stat.) ± 0.47(syst.) ± 0.09(lumi.) pb

Main uncertainties: JES  $\eta$ -intercalibration(7.9%), t-channel generator. (7.9%)

Using various MC generator models, the fiducial cross-section can be extrapolated to the full phase space and can be compared to the NLO+NNLL calculation.

t-channel=87.76+3.44-1.91pb (Vertical line in this plot) (Phys.Rev. D 83, 091503(R)(2011)



$$\sigma_t$$
= 82.6±1.2(stat.)±11.4(syst.)±3.1(PDF)±2.3(lumi.) pb (aMC@NLO)

The value of  $|V_{tb}|$  can be extracted using the acceptance of the aMC@NLO +Herwig generators:

$$|V_{tb}| = 0.97 + 0.06 - 0.07 (exp.) \pm 0.06 (gen. + PDF + theor.)$$

### Measure Wt cross-section in dilepton decay mode @ 8 TeV





### BDT (Boosted Decision Tree) method

Separating the *Wt* signal from the large *ttbar* background is challenging.

- ✓ BDT response is derived from 19 input variables (20 for 2 jet bin).
- ✓ The method chooses the most discriminant variables based in their separation power.

Exactly 2 leptons

One e and one  $\mu$  opposite-sign charge Electron:  $P_T > 25$  GeV,  $|\eta| < 2.47$ Muon  $P_T > 25$  GeV,  $|\eta| < 2.5$ 

One or two jets, at least one jet is *b*-tagged.

BDT classifier plot for 1-jet events. Good agreement is seen between data and expectation.



## Wt channel results

ATLAS-CONF-2013-100

- Cross section extraction:
  - Binned maximum likelihood fit.
- Measured SM *Wt* cross section:

$$\sigma(pp \rightarrow \text{Wt} + \text{X}) = 27.2 \pm 2.8 \text{ (stat)} \pm 5.4 \text{ (syst) pb}$$

Total uncertainty: 21%.
 Main uncertainties: data statistics: 17%,
 flavor tagging 8.4%.



• A direct determination of  $|V_{tb}|$  can be extracted from the cross-section:

$$|V_{tb}|$$
=1.10±0.12(exp.)±0.03(theory.)

## Single top quark: *t*-channel top/anti-top cross-sections and their ratio @7TeV

#### ATLAS-CONF-2012-056

#### **Lepton+jets event selection:**

- Select events contain one charged lepton, missing transverse momentum and two or three jets, one of them b-tagged.
- Main background: W+jets, multijets and top pair, small contributions from Z+jets and diboson events.



The ratio  $R_t = \sigma_{t-ch}(t)/\sigma_{t-ch}(tbar)$  is sensitive to PDFs and new physics.





Predicted cross section: (7TeV pp collision)

$$\sigma_t(t) = 41.9^{+1.8}_{-0.8} \text{ pb}$$
 $\sigma_t(\bar{t}) = 22.7^{+0.9}_{-1.0} \text{ pb}$ 

$$\sigma_t(\bar{t}) = 22.7^{+0.9}_{-1.0} \text{ pb}$$

N.Kidonakis, Phys.Rev. D83 (2011) 091503

# Single top quark: t-channel top/anti-top cross section and ratio @7TeV

ATLAS-CONF-2012-056

- Binned maximum likelihood fit to all output of Neural Network simultaneously, split according to the charge of the lepton.
- Fit background, *t*-channel top quark and *t*-channel top anti-quark simultaneously to extract

their cross-sections and  $R_t$ .

$$\sigma_t(t) = 53.2 \pm 1.7 \text{ (stat.)} \pm 10.6 \text{ (syst.)} \text{ pb} = 53.2 \pm 10.8 \text{ pb}$$
  
 $\sigma_t(\bar{t}) = 29.5 \pm 1.5 \text{ (stat.)} \pm 7.3 \text{ (syst.)} \text{ pb} = 29.5^{+7.4}_{-7.5} \text{ pb}.$ 

$$R_t = 1.81 \pm 0.10 \text{ (stat.)}^{+0.21}_{-0.20} \text{ (syst.)} = 1.81^{+0.23}_{-0.22}.$$
 (black line in the figure)



In this figure, predictions of several PDFs (NLO) are shown. The error contain the uncertainty on the renormalisation and factorization scales.

- Main backgrounds: *W*+jets, multijets and top pairs.
- Main systematic: bkg normalization (5%), ISR/FSR(4%) and JES(4%)
- Ratio measurement reduces systematic mainly on lepton eff, JES and top MC gen.

# FCNC single top quark search@8TeV

ATLAS-CONF-2013-063

- ✓ Model independent analysis
- ✓ FCNC highly suppressed in SM
  - ✓ Branch ratio of FCNC top decay t->qV no larger than 10<sup>-12</sup> ( q= u,c; V=Z,  $\gamma$ ,g)
  - ✓ Interesting channel, predicted by many extensions of SM
  - ✓ Observation can provide clear signal of new physics

|                      | SM                    | 2HDM-III | MSSM | R-MSSM           | TC2  |
|----------------------|-----------------------|----------|------|------------------|------|
| $t \to qg$           | 4,6x10 <sup>-12</sup> | 10-4     | 10-4 | 10 <sup>-3</sup> | 10-5 |
| $t \to q \gamma$     | 4,6x10 <sup>-14</sup> | 10-7     | 10-6 | 10-5             | 10-7 |
| $t \to q \textbf{Z}$ | 1x10 <sup>-14</sup>   | 10-6     | 10-6 | 10-4             | 10-5 |

J. A. Aguilar-Saavedra arXiv:hep-ph/0409342v4



$$\mathcal{L}_{\text{eff}} = g_s \sum_{q=u,c} \frac{\kappa_{qgt}}{\Lambda} \bar{t} \, \sigma^{\mu\nu} T^a (f_q^L P_L + f_q^R P_R) \, q \, G_{\mu\nu}^a + h.c.$$

- $\checkmark$  tqg coupling best studied in production mode
  - ✓ Decay *t->qg* overwhelmed by QCD dijets background
  - ✓ Former search in ATLAS @7TeV, with integrated L=2.05fb<sup>-1</sup>, σ<3.9 pb@95% C.L.

# FCNC single top quark search@8TeV

ATLAS-CONF-2013-063

- ✓ Same selection and background modelling strategy at *t*-channel analysis in 1-jet bin.
- ✓ Use Neural Network output as the discriminant.
- ✓ Set limits on cross-section and FCNC coupling to up/charm quark.
- $\checkmark$  Translate to top decay branching ratio to ug and cg

σ < 2.5pb @95% C.L.







## s-channel analysis @7TeV, s-channel limit

#### ATLAS-CONF-2011-118

- 95% C.L Limits on *s*-channel production
- Integrated luminosity 0.7 fb<sup>-1</sup>.
- Main uncertainties from:

Data statistics 100%

Other from 20-60%

- Dominant bg: *ttbar* (~39%), *W*+*jets*( ~34%)
- MC simulation: s-channel, t-channel, Wt, ttbar,
   Z+jets, Diboson.
- Data Driven: W+jets, Multijets



# $\sigma_t$ (s-channel) < 26.5 pb

#### \*Out of ATLAS:

On 21th, Februray 2014, through a combination of the CDF and Do measurement the first observation of single-top-quark production in the s-channel is claimed.

# Aomalous couplings analysis @7TeV ATLAS

ATLAS-CONF-2013-032

**Motivation:** Probing the couplings of the *Wtb* vertex offers an interesting window to new physics and single top quark events provide a direct probe of these couplings.

The most general Lagrangian for Wtb is:

$$\mathcal{L}_{Wtb} = -rac{g}{\sqrt{2}}ar{b}\gamma^{\mu}\left(V_LP_L + V_RP_R
ight)tW_{\mu}^{-} - rac{g}{\sqrt{2}}ar{b}rac{i\sigma^{\mu
u}}{M_W}q_{
u}\left(g_LP_L + g_RP_R
ight)tW_{\mu}^{-} + ext{h.c.}$$

In SM, 
$$V_L = V_{tb} = 1$$
 and  $V_R = g_L = g_R = 0$ .



Whelicity fraction  $F_{+0,1}$  are sensitive to theta which is the angle between the momentum of lepton  $(p_l)$  in the W boson rest frame and W momtum(q) in the top quark rest frame.

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{\ell}^*} = \frac{3}{8} (1 + \cos\theta_{\ell}^*)^2 F_+ + \frac{3}{8} (1 - \cos\theta_{\ell}^*)^2 F_- + \frac{3}{4} \sin^2\theta_{\ell}^* F_0$$

Helicity fractions related with Wtb couplings.

In single top t-channel events, top quarks are highly polarized (P~0.9), consider the spectator quark in top rest frame, together with the W boson momentum.



# Anomalous coupling @7TeV

ATLAS-CONF-2013-032

The forward-backward asymmetry (AFBN) of the angular distribution between the momentum of lepton( $p_l$ ) in the W boson rest frame and the normal direction N is directly related to Im( $g_R$ ) at leading order:

$$A_{FB}^{N} \equiv \frac{N_{evt}(\cos \theta_{N} > 0) - N_{evt}(\cos \theta_{N} < 0)}{N_{evt}(\cos \theta_{N} > 0) + N_{evt}(\cos \theta_{N} < 0)}$$

$$A_{\rm FB}^{\rm N} = 0.64 \ P \ \mathbb{I}(g_{\rm R})$$

$$A_{\rm FB}^{\rm N} = 0.031 \pm 0.065 \, ({\rm stat.}) \, ^{+0.029}_{-0.031} \, ({\rm syst.})$$

Main systematic: t-channel generator (~2.4%), ttbar generator and parton shower(~1.0%)

This measurement is consistent with SM (zero in SM leading order).

No CP violation found.

Constraints in the top quark polarisation versus  $I(g_R)$  plane from the ANFB measurement.



# **Summary and outlook**

# Measurement of three SM single top-quark model

- ✓ A fiducial cross-section has been obtained and the total inclusive *t*-channel cross-section is calculated using various MC generators.
- ✓ Wt 4.2  $\sigma$  observation (4.0  $\sigma$  expected).
- ✓ Top/anti-top quark cross-section ratio is measured and the measurement is in agreement with current SM/PDF.



#### **Search for new physics**

- $\checkmark$  The most stringent to date on FCNC single top-quark production processes for qg->t.
- ✓ Measurement of a CP-violating forward-backward asymmetry AFBN is consistent with CP invariance in top quark decays.

# **Backup**

## s-channel analysis @8TeV

Motivations: Improve results provided at 7 TeV (ATLAS-CONF-2011-102)

Strategy: Multivariate analysis. 1 lepton, 2 b-tag jet.

- Train one BDT against the main bkgs (ttbar, W+h.f jets) using as input variables the well modeled distributions with separation power> 5%.
- Application of the BDT algorithm to different samples of selected events.

| 3    | disabil. | ound (test sa<br>ov-Smirno                                           |              |                  | nd (training sar<br>background = ( | * |
|------|----------|----------------------------------------------------------------------|--------------|------------------|------------------------------------|---|
| 2.5  |          |                                                                      |              |                  |                                    | 0 |
| 2    |          |                                                                      |              |                  |                                    |   |
| 1.5  | 1        |                                                                      | 81           | .+ <del>  </del> | hi-                                |   |
| 5    |          |                                                                      | +            |                  | 4                                  |   |
| 1    | 7        | +++++++++                                                            | to the store |                  | -                                  |   |
| 10.5 |          | †++++++<br>//2<br>//2<br>//2<br>//2<br>//2<br>//2<br>//2<br>//2<br>/ |              |                  | 777                                | - |



- A binned log-likelihood fit is performed on the BDT response:  $L(\beta^t, \beta^t bar; \beta^b_j) = \prod_{k=1}^M \frac{e^{-\mu_k} \cdot \mu_k^{n_k}}{n_k!} \cdot \prod_{j=1}^B G(\beta^b_j; 1.0, \Delta_j)$
- Extraction of the observed nominal s-channel cross-section.
  - Dominant systematics are MET scale, MC statistics and JES.
- Extracted limit has improved with respect the 7 TeV (~5·SM), expected to be ~4·SM.
- Systematics down to ~100% but still large.

## to be updated if

approved

| Results                       | ATLAS            |
|-------------------------------|------------------|
| S-channel XS                  | 6.4 +6.6 –6.4 pb |
| Symmetrized total uncertainty | +/- 107%         |
| Limit                         | 4.4*SM           |
| Significance                  | 1.5 σ            |

# Fiducial Volume cut

| Object                                                                     | Cut                                                                                                    |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Electrons                                                                  | $p_{\rm T} > 25~{ m GeV}$ and $ \eta  < 2.5$                                                           |
| Muons                                                                      | $p_{\rm T} > 25 \ {\rm GeV} \ {\rm and} \  \eta  < 2.5$                                                |
| Jets                                                                       | $p_{\rm T} > 30 \ {\rm GeV} \ {\rm and} \  \eta  < 4.5$                                                |
|                                                                            | $p_{\rm T} > 35$ GeV, if $2.75 <  \eta  < 3.5$                                                         |
| Lepton $(\ell)$ , Jets $(j_i)$                                             | $\Delta R(\ell, j_i) > 0.4$                                                                            |
| $E_{ m T}^{ m miss}$                                                       | $E_{\rm T}^{\rm miss} > 30~{\rm GeV}$                                                                  |
| Transverse W-boson mass                                                    | $m_{\rm T}(W) > 50~{\rm GeV}$                                                                          |
| Lepton ( $\ell$ ), jet with the highest $p_{\mathrm{T}}\left(j_{1}\right)$ | $p_{\mathrm{T}}(\ell) > 40 \text{ GeV} \left(1 - \frac{\pi -  \Delta\phi(j_1, \ell) }{\pi - 1}\right)$ |

# $|V_{tb}| = 0.97 \pm 0.01 \text{ (stat.)}_{-0.07}^{+0.06} \text{ (syst.)} \pm 0.06 \text{ (gen.} + \text{PDF)}_{-0.01}^{+0.02} \text{ (theor.)} \pm 0.01 \text{ (lumi.)}$ $= 0.97_{-0.07}^{+0.06} \text{ (exp.)} \pm 0.06 \text{ (gen.} + \text{PDF} + \text{theor.)}$ $= 0.97_{-0.10}^{+0.09}.$

#### 14 NN variable ordered by their importance.

| Variable                                      | Definition                                                                      |
|-----------------------------------------------|---------------------------------------------------------------------------------|
| $ \eta(j) $                                   | pseudorapidity of the light quark (untagged) jet (j)                            |
| $m(\ell vb)$                                  | top-quark mass reconstructed from the charged lepton, neutrino and b-quark jet  |
| m(jb)                                         | invariant mass of the tagged (b) and light quark jet (j)                        |
| $m_{\mathrm{T}}(W)$                           | transverse mass of the reconstructed W boson                                    |
| $m(\ell b)$                                   | invariant mass of the lepton $(\ell)$ and the tagged jet $(b)$                  |
| $\eta(lv)$                                    | pseudorapidity of the reconstructed W-boson                                     |
| $\cos\Theta(\ell,j)_{\ell\nu b\mathrm{r.f.}}$ | cosine of the angle $\theta$ between the charged lepton and the                 |
|                                               | light quark (untagged) jet (j) in the rest frame of the reconstructed top quark |
| $H_T(l, \text{jets}, E_T^{\text{miss}})$      | scalar sum of the transverse momenta of the jets,                               |
|                                               | the charged lepton and the missing transverse momentum                          |
| $E_{\mathrm{T}}^{\mathrm{miss}}$              | transverse missing momentum                                                     |
| $\Delta R(\ell \nu b, \ell)$                  | $\Delta R$ of the reconstructed top quark and the charged lepton                |
| $p_{\mathrm{T}}(\ell \nu)$                    | transverse momentum of the reconstructed W-boson                                |
| $\eta(\ell vb)$                               | pseudorapidity of the reconstructed top quark                                   |
| $\eta(b)$                                     | pseudorapidity of the b-quark jet (b)                                           |
| $p_{\mathrm{T}}(\ell \nu b)$                  | transverse momentum of the reconstructed top quark                              |



## BDT, eu, 1-jet

• Summary table for the BDT input

| Variable                                          | S(×10 <sup>3</sup> ) |
|---------------------------------------------------|----------------------|
| $p_T^{sys}(I_1,I_2,E_T^{miss},j_1)$               | 37.6                 |
| $\Delta \phi ((l_1, l_2), (E_T^{miss}, j_1))$     | 20.9                 |
| $\Delta p_T ((l_1, l_2, j_1), E_T^{miss})$        | 19.5                 |
| $\Delta p_T ((l_1, l_2), (E_T^{miss}, j_1))$      | 16.4                 |
| $\Delta \phi ((l_1, l_2), j_1)$                   | 11.9                 |
| $p_T^{sys}$ $(I_1, I_2, j_1)$                     | 11.0                 |
| $H_T(I_2, E_T^{miss})$                            | 9.7                  |
| $\Delta R(l_1,j_1)$                               | 9.4                  |
| $\Delta p_T (I_1, E_T^{miss})$                    | 9.1                  |
| $p_T^{sys}(l_1,j_1)$                              | 9.0                  |
| $\Delta \phi (l_1, j_1)$                          | 8.8                  |
| E <sup>miss</sup>                                 | 8.7                  |
| $\sum E_T$                                        | 8.6                  |
| $H_T$ $(I_2, E_T^{miss}, j_1)$                    | 8.5                  |
| $\Delta R$ (( $l_1, l_2$ ), $j_1$ )               | 8.4                  |
| $p_{T_{i-1}}^{sys}(I_1, E_{T_{i-1}}^{miss}, j_1)$ | 8.2                  |
| $p_{T}^{sys}$ $(I_2, E_T^{miss})$                 | 8.0                  |
| $p_T^{sys}$ $(I_1, I_2, E_T^{miss})$              | 7.8                  |
| $H_T^{'}(E_T^{miss},j_1)$                         | 7.4                  |
| $\Delta \phi (MET, j_1)$                          | 7.0                  |





# Wt channel: BDT

- Separating the Wt signal from the large ttbar background is chanllenging.
  - BDT response is derived from 19 input variables(20 for 2 jet). These 19 well modeled variables are combined into a powerful one.
  - The method chooses the most discriminant variables based in their separation power:





Two most discriminating variable 2jet events.



BDT classifier plot for 2-jet events.

## Wt channel results

- Signal extraction:
  - Maximum likelihood fit.
  - Including 2-jet and >=3 jet
     bin in the likelihood function to
     control top pair.
- Measured SM Wt cross section.

$$\sigma(pp \to Wt + X) = 27.2 \pm 2.8 \text{ (stat)} \pm 5.4 \text{ (syst)}$$

 Interpreted to |Vtb| by assuming Wt mainly produced from |Vtb|, without any assumption on top decay

$$|V_{tb} \cdot f| = 1.10 \pm 0.12 \text{ (exp)} \pm 0.03 \text{ (theory)}.$$

| Source                                      | $\Delta \sigma / \sigma$ | r [%]    |
|---------------------------------------------|--------------------------|----------|
|                                             | observed                 | expected |
| Data statistics                             | 7.1                      | 8.6      |
| MC statistics                               | 2.8                      | 3.5      |
| Experimental uncertainties                  |                          |          |
| Lepton modeling                             | 2.4                      | 2.4      |
| Jet identification                          | 0.2                      | 0.6      |
| Jet energy scale                            | 10                       | 12       |
| b-jet energy scale                          | 5.0                      | 6.3      |
| Jet energy resolution                       | 0.7                      | 0.2      |
| $E_{\mathrm{T}}^{\mathrm{miss}}$ scale      | 4.1                      | 5.0      |
| $E_{\mathrm{T}}^{\mathrm{miss}}$ resolution | 4.5                      | 5.3      |
| Flavor tagging                              | 8.4                      | 9.4      |
| Theory uncertainties                        |                          |          |
| $Wt/t\bar{t}$ overlap modeling              | 1.4                      | 1.6      |
| PDF                                         | 2.5                      | 3.2      |
| Background normalization                    | 3.6                      | 4.4      |
| ISR/FSR                                     | 5.9                      | 6.0      |
| Wt generator and PS                         | 11                       | 11       |
| $t\bar{t}$ generator and PS                 | 7.5                      | 9.2      |
| Luminosity                                  | 3.7                      | 3.9      |
| Total (syst)                                | 20                       | 23       |
| Total (syst+stat)                           | 21                       | 24       |

where f is a coupling which is allowed to be greater than 1 (f=1 in SM).

# Single top quark: t-channel top/anti-top cross section and ratio @7TeV

ATLAS-CONF-2012-056

#### Motivation to measure the cross-section ratio R<sub>t</sub> in the t-channel:

- ✓ The charge of the top quark is connected to the type of the incoming light-flavour quakr.
- ✓ Momentum fractions for incoming u- and d-quark in t-channel single events: 0.02 < x < 0.5.
- $\checkmark$  PDF prediction for R<sub>t</sub> quite different, R<sub>t</sub> can provide additional information to further constrain PDFs.
- $\checkmark$  Investigating R<sub>t</sub> also provides an interesting handle on searching for new physics.





LHC energy at 7TeV

### FCNC highly suppressed in SM

- branching ratio of FCNC top decay t → qV no larger than 10<sup>-12</sup> (q = u, c V = Z, γ, g)
- new physics models allow e.g. top FCNC interactions at much larger rates
- observation would provide clear signal of new physics

|                          | SM                    | 2HDM-III         | MSSM | R-MSSM | TC2              |
|--------------------------|-----------------------|------------------|------|--------|------------------|
| $t \to qg$               | 4,6x10 <sup>-12</sup> | 10-4             | 10-4 | 10-3   | 10-5             |
| $t \to q \gamma$         | 4,6x10 <sup>-14</sup> | 10 <sup>-7</sup> | 10-6 | 10-5   | 10 <sup>-7</sup> |
| $t \to q \boldsymbol{Z}$ | 1x10 <sup>-14</sup>   | 10-6             | 10-6 | 10-4   | 10-5             |

J. A. Aguilar-Saavedra arXiv:hep-ph/0409342v4



## tqg coupling best studied in production mode:

- decay t → qg overwhelmed by QCD dijets background
- former search in ATLAS using parts of 2011 data: limit  $\sigma(qg \rightarrow t) \times BR(t \rightarrow Wb) < 3.9 pb$
- current limits on branching fractions:
  BR(t→ug) < 5.7 · 10<sup>-5</sup> BR(t→cg) < 2.7 · 10<sup>-4</sup>

## 2012 analysis:

switched to (14.2 fb<sup>-1</sup>) 8TeV 2012 dataset & NLO signal generator (incl. 2 → 2 processes)

# s-channel observation at Tevatron

arXiv:1402.5126 [hep-ex] Tevatron observation

• On 21th, Februray 2014, through a combination of the CDF and Do measurement the first observation of single-top-quark production in the *s*-channel is claimed.



#### observation of s-channel production: 6.3 s.d.



## Measure Wt cross-section in dilepton decay mode @ 8 TeV

• Very hard to separate from top quark pair production

ATLAS-CONF-2013-100



### Exactly 2 leptons

One e and one  $\mu$  opposite-sign charge Electron:  $P_T > 25$  GeV,  $|\eta| < 2.47$ Muon  $P_T > 25$  GeV,  $|\eta| < 2.5$ 

One or two jets, at least one jet is *b*-tagged.

| Process              | 1-jet           | 2-jet            |
|----------------------|-----------------|------------------|
| Wt                   | $1140 \pm 190$  | $710 \pm 100$    |
| $t\bar{t}$           | $5700 \pm 800$  | $12700 \pm 1400$ |
| Diboson              | $120 \pm 30$    | $79 \pm 28$      |
| $Z(\tau\tau)$ + jets | $110 \pm 40$    | $90 \pm 40$      |
| Fake lepton          | $27 \pm 14$     | $22 \pm 11$      |
| Total Expected       | $7100 \pm 1100$ | $13600 \pm 1600$ |
| Data Observed        | 6906            | 13159            |

# Wt channel: BDT (Boosted Decision Tree)

- Separating the *Wt* signal from the large *ttbar* background is challenging. ATLAS-CONF-2013-100
  - BDT response is derived from 19 input variables (20 for 2 jet bin).
  - The method chooses the most discriminant variables based in their separation power:





Two most discriminating variables in 1 jet BDT.





BDT classifier plot for 1-jet events.

Good agreement is seen between data and expectation in 2-jet as well.