Rescuing the Wino from Indirect Searches

Nikita Blinov^{1,2}, David Morrissey¹, Jonathan Kozaczuk¹, Arjun Menon³

 $$^{1}\mathrm{TRIUMF},\,\mathrm{Vancouver}\;\mathrm{BC}$$ $^{2}\mathrm{University}$ of British Columbia, Vancouver BC $^{3}\mathrm{University}$ of Oregon, Eugene OR

May 5, 2014 PHENO 2014

The Moduli Problem and Reheating

- \blacksquare Scalars (moduli) with $M_{\rm Pl}^{-1}$ suppressed interactions ubiquitous in string theory
- At least one modulus with $m_{\varphi} \approx m_{3/2} \leftarrow$ SUSY breaking scale
- \blacksquare Coherent oscillations of φ store energy, dominate energy content of the universe
- $\ \ \, \varphi$ decays when $\Gamma_{\varphi}\approx H$ and reheats the universe at $T=T_{\rm RH}$

$$T_{\mathrm{RH}} \approx 7.7 \; \mathrm{MeV} \left(\frac{m_{\varphi}}{100 \; \mathrm{TeV}} \right)^{3/2}$$

 \blacksquare If all superpartners at $m_{3/2}\sim m_{\varphi}\gtrsim 100~{\rm TeV},$ bleak prospects for SUSY discovery at LHC

A Solution: Anomaly Mediation and Wino DM

Split spectrum predicted by Anomaly Mediated Supersymmetry Breaking (AMSB)

$$m_{\lambda} \sim (\text{loop factor}) \times m_{3/2}, \ m_{\tilde{f}} \sim m_{3/2}$$

- lacksquare Gauginos can be light, despite $m_{3/2}\gtrsim 100~{
 m TeV}$
- For SM $M_1:M_2:M_3\approx 7:1:3\Rightarrow$ Wino LSP

Wino DM

 $\widetilde{W}\widetilde{W}$ annihilation:

$$\tilde{W}$$
 W^+
 \tilde{W}
 W^-

$$\langle \sigma v \rangle \approx 4 \times 10^{-24} \text{ cm}^3/\text{s} \left(\frac{100 \text{ GeV}}{m_{\widetilde{W}}}\right)^2$$

Non-thermal Wino Dark Matter

Sub TeV wino produced non-thermally by moduli decays

$$\Omega_{\widetilde{W}} h^2 \approx \frac{(m_{\widetilde{W}}/20)}{T_{\rm RH}} \Omega_{\rm f.o.}$$

 T_{RH} [GeV]

Constraints from Indirect Detection

■ Large annihilation cross-section to γ lines & continuum γ s

$$\tilde{W} \xrightarrow{\chi^{\pm}} W^{\pm} \qquad \gamma$$

$$\tilde{W} \xrightarrow{W^{\pm}} \gamma, Z$$

- Large expected signal from galactic center
- HESS and Fermi-LAT put bounds on line fluxes

H.E.S.S. (2013) and Fermi-LAT (2013) Fan and Reece (2013) and Cohen, Lisanti, Pierce and Slatyer (2013)

Implications for Scale of SUSY Breaking

■ ID constraints limit \widetilde{W} abundance $\Leftrightarrow T_{\mathrm{RH}} \Leftrightarrow m_{\varphi}!$

$$\Omega_{\widetilde{W}} h^2 \approx \frac{(m_{\widetilde{W}}/20)}{T_{\rm RH}} \Omega_{\rm f.o.}$$

■ If MSSM+AMSB is correct then

$$m_{3/2} \sim \frac{g_2}{\beta_2(g_2)} m_{\widetilde{W}}$$

and

$$m_{3/2} \sim m_{\varphi}$$

 \blacksquare Serious conflict between annihilation bound and \widetilde{W} mass prediction

Fan and Reece (2013) Cohen, Lisanti, Pierce and Slatyer (2013)

Ways Out?

If we want superpartners at LHC with AMSB-like spectrum, must suppress Wino abundance or annihilations into photons

Options:

- 1. Light hidden sector (HS) with the real LSP: $\widetilde{W} \to \chi_1^x + \dots$ No direct annihilation into SM
- 2. **Asymmetric DM**Annihilations suppressed by small $\overline{\rm DM}$ density
- 3. R-parity violation: $\widetilde{W} \to \mathrm{SM} + \overline{\mathrm{SM}}$
- 4. ???

U(1)' Hidden Sector

Spontaneously broken U(1)' kinetically mixed with $U(1)_Y$

$$W = W_{\mathrm{MSSM}} + \mu' H H^c; \quad \mathscr{L} \supset \frac{\epsilon}{2} \int d^2 \theta X^{\alpha} B_{\alpha}$$

HS Neutralino, χ^x_1 can be lighter than $\widetilde{\,W\,}$ and allows for $\widetilde{\,W\,}\!\to X_\mu\chi^x_1$

- lacksquare χ^x_1 annihilates directly to HS
- Non-thermal WIMP miracle can be realized with χ_1^x
- On-shell annihilation products decay into SM

$$\Gamma(X \to \overline{\rm SM} \, {\rm SM}) \propto \frac{1}{3} \alpha \epsilon^2 m_x$$

Indirect Detection and Cosmology Constraints

- SM decay products generally produce HE photons from hadronization and radiation
- $lack \gamma$ lines also possible, but the rate is negligible
- Annihilations during recombination at $z \sim 1000$ distorts surface of last scattering Hütsi, Chluba, Hektor & Raidal (2011), Galli, locco, Bertone & Melchiorri (2011)

Asymmetric Dark Matter

Asymmetric Dark Matter solves the late-time annihilation problem, while allowing \widetilde{W} decay into the $\ensuremath{\mathsf{HS}}$

 \blacksquare Dirac fermion or complex scalar Y with $(n_Y-n_{\overline{Y}})/s=\eta$ and $n_Y\gg n_{\overline{Y}}$ at late times

Kaplan, Luty, & Zurek (2009)

 \blacksquare Efficient annihlation required to deplete $n_{\overline{Y}}$

$$\langle \sigma v \rangle \gg 3 \times 10^{-26} \text{ cm}^3/\text{s}$$

■ Light mediators needed for efficient annihilation \Rightarrow reuse the U(1)' HS

Challenges for ADM+U(1)'

Efficient annihilation requires

- 1. Sizable $g_x \gtrsim 0.1$
- 2. A light mediator \Rightarrow Spin-independent scattering off nuclei

$$\tilde{\sigma}_n \approx 2 \times 10^{-38} \text{ cm}^2 \left(\frac{\epsilon}{10^{-3}}\right)^2 \left(\frac{g_x}{0.1}\right)^2 \left(\frac{\mu_n}{1 \text{ GeV}}\right)^2 \left(\frac{1 \text{ GeV}}{m_x}\right)^4.$$

Note: ϵ cannot be arbitrarily small - \widetilde{W} must decay before BBN, maintain kinetic equilibrum between HS and MSSM

The HS spectrum must accomodate the decay $\chi_1^x \to Y\widetilde{Y}^*$

Observations

 \blacksquare Non-thermal WIMP miracle with small $T_{\rm RH}$ (i.e. low $m_{3/2})$ is extremely constrained

Low $T_{\rm RH} \Rightarrow$ large annihilation rate needed \Rightarrow High ID rate (if annihilation products are/decay down to SM)

- lacktriangle Even simple extensions like a plain $\mathit{U}(1)'$ are robustly ruled out by ID
- Moduli and DM problems can be solved using ADM, while maintaining collider accessible MSSM gauginos