Rescuing the Wino from Indirect Searches

Nikita Blinov1,2, David Morrissey1, Jonathan Kozaczuk1, Arjun Menon3

1TRIUMF, Vancouver BC
2University of British Columbia, Vancouver BC
3University of Oregon, Eugene OR

May 5, 2014
PHENO 2014
The Moduli Problem and Reheating

- Scalars (moduli) with M_{Pl}^{-1} suppressed interactions ubiquitous in string theory
- **At least one modulus with** $m_\varphi \approx m_{3/2} \leftarrow$ SUSY breaking scale
- Coherent oscillations of φ store energy, dominate energy content of the universe
- φ decays when $\Gamma_\varphi \approx H$ and reheats the universe at $T = T_{RH}$

$$T_{RH} \approx 7.7 \text{ MeV} \left(\frac{m_\varphi}{100 \text{ TeV}}\right)^{3/2}$$

- If all superpartners at $m_{3/2} \sim m_\varphi \gtrsim 100$ TeV, bleak prospects for SUSY discovery at LHC
Split spectrum predicted by Anomaly Mediated Supersymmetry Breaking (AMSB)

\[m_\lambda \sim (\text{loop factor}) \times m_{3/2}, \ m_f \sim m_{3/2} \]

- Gauginos can be light, despite \(m_{3/2} \gtrsim 100 \text{ TeV} \)
- For SM \(M_1 : M_2 : M_3 \approx 7 : 1 : 3 \Rightarrow \text{Wino LSP} \)

Wino DM

- \(\tilde{W}\tilde{W} \) annihilation:

\[
\langle \sigma v \rangle \approx 4 \times 10^{-24} \text{ cm}^3/\text{s} \left(\frac{100 \text{ GeV}}{m_{\tilde{W}}} \right)^2
\]
Non-thermal Wino Dark Matter

Sub TeV wino produced non-thermally by moduli decays

\[\Omega_{\tilde{W}} h^2 \approx \frac{(m_{\tilde{W}}/20)}{T_{RH}} \Omega_{f.o.} \]

\[m_{\tilde{W}} = 1000 \text{ GeV}, \ T_{RH} = 38 \text{ MeV} \]

![Graph showing non-thermal abundance \(\Omega_{\chi} h^2 \) and \(\Phi, R, N_{\tilde{W}}, N_i \) against \(m_\phi a \) and \(T_{RH} \) and \(m_\chi \).]
Constraints from Indirect Detection

- Large annihilation cross-section to γ lines & continuum γs

$\chi^\pm \rightarrow W^\pm \gamma$

$\tilde{W} \rightarrow W^\pm \gamma$

$\chi^\pm \rightarrow W^\pm \gamma, Z$

- Large expected signal from galactic center

- HESS and Fermi-LAT put bounds on line fluxes

$H.E.S.S. \ (2013) \ \text{and} \ \text{Fermi-LAT} \ (2013)$

Fan and Reece (2013) \ \text{and} \ Cohen, Lisanti, Pierce and Slatyer (2013)
Implications for Scale of SUSY Breaking

- ID constraints limit \tilde{W} abundance $\Leftrightarrow T_{RH} \Leftrightarrow m_\phi$!

 $\Omega_{\tilde{W}} h^2 \approx \frac{(m_{\tilde{W}}/20)}{T_{RH}} \Omega_{\text{f.o.}}$

- If MSSM+AMSB is correct then

 $m_{3/2} \sim \frac{g_2}{\beta_2(g_2)} m_{\tilde{W}}$

 and

 $m_{3/2} \sim m_\phi$

- Serious conflict between annihilation bound and \tilde{W} mass prediction

Fan and Reece (2013)
Cohen, Lisanti, Pierce and Slatyer (2013)
If we want superpartners at LHC with AMSB-like spectrum, must suppress Wino abundance or annihilations into photons

Options:

1. **Light hidden sector (HS) with the real LSP**: \(\tilde{W} \rightarrow \chi_1^x + \ldots \)

 No direct annihilation into SM

2. **Asymmetric DM**

 Annihilations suppressed by small \(\overline{DM} \) density

3. **\(R \)-parity violation**: \(\tilde{W} \rightarrow SM + \overline{SM} \)

4. ???
$U(1)'$ Hidden Sector

Spontaneously broken $U(1)'$ kinetically mixed with $U(1)_Y$

$$W = W_{\text{MSSM}} + \mu' HH^c; \quad \mathcal{L} \supset \frac{\epsilon}{2} \int d^2 \theta X^\alpha B^\alpha$$

HS Neutralino, χ_1^x can be lighter than \tilde{W} and allows for $\tilde{W} \rightarrow X_\mu \chi_1^x$

- χ_1^x annihilates directly to HS
- Non-thermal WIMP miracle can be realized with χ_1^x
- **On-shell annihilation products decay into SM**

$$\Gamma(X \rightarrow \overline{\text{SM}} \text{SM}) \propto \frac{1}{3} \alpha \epsilon^2 m_x$$

$$\Omega_x h^2 \text{ and } m_{\chi_1} \text{ for } g_x = 0.1$$

![Graph showing $\Omega_x h^2$ and m_{χ_1} for $g_x = 0.1$.](image)
Indirect Detection and Cosmology Constraints

- SM decay products generally produce HE photons from hadronization and radiation.
- γ lines also possible, but the rate is negligible.
- Annihilations during recombination at $z \sim 1000$ distorts surface of last scattering.

Asymmetric Dark Matter

Asymmetric Dark Matter solves the late-time annihilation problem, while allowing \tilde{W} decay into the HS

- Dirac fermion or complex scalar Y with $(n_Y - n_{\bar{Y}})/s = \eta$ and $n_Y \gg n_{\bar{Y}}$ at late times

Kaplan, Luty, & Zurek (2009)

- Efficient annihilation required to deplete $n_{\bar{Y}}$

$$\langle \sigma v \rangle \gg 3 \times 10^{-26} \text{ cm}^3/\text{s}$$

- Light mediators needed for efficient annihilation \Rightarrow reuse the $U(1)'$ HS

$g_x = 0.2$, $m_Y = 1.5$ GeV, $T_{RH} = 28$ MeV
Challenges for ADM+ $U(1)'$

Efficient annihilation requires

1. Sizable $g_x \gtrsim 0.1$

2. A light mediator \Rightarrow Spin-independent scattering off nuclei

$$\tilde{\sigma}_n \approx 2 \times 10^{-38} \text{ cm}^2 \left(\frac{\epsilon}{10^{-3}} \right)^2 \left(\frac{g_x}{0.1} \right)^2 \left(\frac{\mu_n}{1 \text{ GeV}} \right)^2 \left(\frac{1 \text{ GeV}}{m_x} \right)^4.$$

Note: ϵ cannot be arbitrarily small - \tilde{W} must decay before BBN, maintain kinetic equilibrium between HS and MSSM

The HS spectrum must accommodate the decay $\chi_1^x \rightarrow Y\tilde{Y}^*$
Observations

- Non-thermal WIMP miracle with small T_{RH} (i.e. low $m_{3/2}$) is extremely constrained

 \[\text{Low } T_{RH} \Rightarrow \text{large annihilation rate needed } \Rightarrow \text{High ID rate (if annihilation products are/decay down to SM)} \]

- Even simple extensions like a plain $U(1)^\prime$ are robustly ruled out by ID

- Moduli and DM problems can be solved using ADM, while maintaining collider accessible MSSM gauginos