Difficult Signatures at the LHC

Matthew R Buckley Rutgers University

The Successes of the LHC

Suppression

- Don't forget: HIGGS!
- Strong limits on the production of
 - massive colored states decaying with significant \mathbb{E}_T
 - \mathbb{E}_T + something
 - High- p_T objects (e.g. RPV SUSY)

Degenerate Physics

 "SUSY-like" searches often rely on a massdifference variable to distinguish from background

$$M_{\Delta} = \frac{m_P^2 - m_{\chi}^2}{m_P}$$

• Difficult when signal point has $m_P \sim m_\chi$ or $M_\Delta \sim m_W$

Degenerate Physics

 "SUSY-like" searches often rely on a massdifference variable to distinguish from background

$$M_{\Delta} = \frac{m_P^2 - m_{\chi}^2}{m_P}$$

• Difficult when signal point has $m_P \sim m_\chi$ or $M_\Delta \sim m_W$

Super-Razor

- Attempt to reconstruct events of the form $pp \rightarrow S_1S_2, \ S_i \rightarrow (visible) + \chi$
- Impossible event-by-event, what can we do statistically?

Super-Razor

- Build boost from lab frame to estimate of center of mass frame. This gives estimated CM mass.
 - Resulting mass variable $\sqrt{\hat{s}_R}$ estimator of M_Δ
 - Also get $\vec{\beta}_R$, estimator of boost to CM frame
- From this approximate CM frame, can build boost vector to approximate decay frames.

Super-

Mass variables are 'corrected" versions of the original razor variables. Sensitive to $M_{\Lambda}^{\gamma_{2\gamma}^{decay}M_{\Lambda}}$

 M^R_{Δ} / M_{Δ}

 M^R_{Δ} / M_{Δ}

√s=8 TeV

 $M^R_{\Delta} \,/\, M_{\Delta}$

- Not good when $M_{\Delta} \rightarrow m_W$
- But we also have the approximations of the boosts.
- Notice that, as $m_{\tilde{\chi}_1^0}/m_{\tilde{\ell}} \to 1$, we overestimate the boost β_R
- Can define an $\Delta \phi_{R}^{\beta}$ angle between the boost direction and *R*-frame $q_1 + q_2$

 q_2

MRB, J. Lykken, C. Rogan, M. Spiropulu 1310.4827

Super-Razor Angles

- So far, these are "jet-corrected" versions of the original razor variables. Sensitive to
 - Not good when $M_\Delta \to m_W$
- But we also have the approximations of the boosts.
- Notice that, as $m_{\tilde{\chi}^0_1}/m_{\tilde{\ell}} \to 1$, we overestimate the boost β_R
- Can define an $\Delta \phi_R^\beta$ angle between the solution boost direction and *R*-frame $q_1 + q_2$

Predicted Reach at 8 TeV

MRB, J. Lykken, C. Rogan, M. Spiropulu 1310.4827

Predicted Reach at 8 TeV

- Moderate increases in the dilepton channels. $pp \to \tilde{\ell}^- \tilde{\ell}^+ \to \ell^- \ell^+ \tilde{\chi}^0_1 \tilde{\chi}^0_1$ $pp \to \tilde{\chi}_1^- \tilde{\chi}_1^+ \to \ell^- \ell^+ \nu \bar{\nu} \tilde{\chi}_1^0 \tilde{\chi}_1^0$
- Major problem is lack of events passing trigger.
 - New triggers based on super-razor variables?

Stau Search

- "The best upper limit on the production crosssection is found for a stau mass of 140 GeV and a $\tilde{\chi}_1^0$ mass of 10 GeV."
 - (no plot)

Stau Search

- Using Super-Razor variables should be able to improve the reach.
- Working on theorist-level analysis at 14 TeV.
 - Use super-razor variables for both shape analysis and event selection.

Conclusions

- Impressive bounds from the LHC from 7/8 TeV.
 - Can expect this to continue at 13/14 TeV
- However: "low" energy physics could remain undiscovered even in existing data.
 - Especially when signal lives inside background distributions
 - Higher energy may make these channels more difficult, as trigger thresholds rise
 - We still need new ways to search.
 - Super-Razor is one way, but not the only new way.