Charged Higgs Decays

Oscar Stål Stockholm University

Prospects for Charged Higgs Discovery at Colliders Uppsala, 2014-09-17

The Charged Higgs boson

- Charged Higgs bosons appear whenever the scalar sector responsible for EWSB is extended by fields transforming non-trivially under SU(2).
- In this talk: SU(2) doublet -> One charged Higgs pair
 - Minimal supersymmetry (MSSM, NMSSM, ...)
 - General two-Higgs-Doublet models (2HDM)
- Charged Higgs bosons are important since the search results (exclusion limits, ...) complements the neutral Higgs sector, and can often be discussed with fewer ambiguities:
 e.g. light/heavy SM-like Higgs question, CP-admixture, MSSM mass relations, scenarios ...

-> Don't disregard searches which appear to have low sensitivity in a particular scenario

Quick overview of H⁺ decay modes

Mode	MSSM	NMSSM	2HDM	EXP
$H^+ \to \tau^+ \nu_\tau$	Х	Х	Х	ATL-CONF-2013-090 CMS [1205.5736]
$H^+ \to \mu^+ \nu_\mu$	Х	X	Х	
$H^+ \to t\bar{b}$	Х	X	Х	CMS-HIG-13-026
$H^+ \to c\bar{b}$	(X)	(X)	Х	
$H^+ \to c\bar{s}$	Х	X	Х	ATLAS [1302.3694] CMS-HIG-13-035
$H^+ \to W^+ h$	(X)	X	Х	
$H^+ \to W^+ H$	-	X	Х	
$H^+ \to W^+ A$	-	X	Х	
$H^+ \to \chi_i^+ \chi_j^0$	Х	X	-	

Calculation of decay modes in MSSM

- Coupling to light quarks/leptons are suppressed by small masses, additional CKM suppression for flavor off-diagonal couplings
- From LHCHXSWG MSSM recommendations:
 - $$\begin{split} \Gamma_{H^{\pm}} &= \Gamma_{H^{\pm} \to \tau \nu_{\tau}}^{FH} + \Gamma_{H^{\pm} \to \mu \nu_{u}}^{FH} + \Gamma_{H^{\pm} \to hW}^{FH} + \Gamma_{H^{\pm} \to HW}^{FH} + \Gamma_{H^{\pm} \to AW}^{FH} \\ &+ \Gamma_{H^{\pm} \to tb}^{HD} + \Gamma_{H^{\pm} \to ts}^{HD} + \Gamma_{H^{\pm} \to td}^{HD} + \Gamma_{H^{\pm} \to cb}^{HD} + \Gamma_{H^{\pm} \to cs}^{HD} + \Gamma_{H^{\pm} \to cd}^{HD} \\ &+ \Gamma_{H^{\pm} \to ub}^{HD} + \Gamma_{H^{\pm} \to us}^{HD} + \Gamma_{H^{\pm} \to ud}^{HD} , \end{split}$$
- Two programs are used by XSWG to calculate MSSM decays of H⁺: FeynHiggs (FH)
 Keinemeyer, W. Hollik, G. Weiglein, [hep-ph/9812320]
 A. Djouadi, J. Kalinowski, M. Spira, [hep-ph/9704448]
- QCD corrections important, including MSSM-specific contributions to bottom Yukawa coupling enhanced with tan β (" Δ_b effects") Decays with gauge couplings typically sub-dominant in MSSM

MSSM H⁺ decays to SM particles

Example: M_h^{mod+} benchmark scenario

M. Carena, S. Heinemeyer, OS, C. Wagner, G. Weiglein, [1302.7033]

Modes with light quarks could become more important for really low tan $\beta \sim 1$ (requires high M_{stop}) cHarged 2014

2014-09-17

What is missing in this picture?

 Decays to SUSY states (chargino/neutralino pairs) can become dominant for heavy H⁺

• Limits from τv searches interpreted in this scenario are less excluding than the corresponding 2HDM Type-II (without SUSY)

SUSY Decays of Heavy MSSM Higgs bosons

Light SUSY states is either considered a nuisance for "SM" searches
 – or an opportunity to improve sensitivity in the "wedge" region

Decays involving gauge couplings

The couplings governing the decays

$$H^+ \to W^+ h \qquad H^+ \to W^+ H \qquad H^+ \to W^+ A$$

have generic form in *all* two-Higgs-doublet models:

$$g_{H^{\pm}W^{\mp}h} \propto \frac{g}{2}\cos(\beta - \alpha) \quad g_{H^{\pm}W^{\mp}H} \propto \frac{g}{2}\sin(\beta - \alpha) \quad g_{H^{\pm}W^{\mp}A} \propto \frac{g}{2}$$

- In the alignment limit, with h as the SM-like Higgs boson $\sin(\beta - \alpha) \rightarrow 1$

-
$$H^+ \rightarrow H_{\rm SM} W^+$$
 is suppressed

Sizeable rates for H⁺ into lighter Higgs/vector final states requires

- mass hierachies among scalars
- suppression of H⁺-fermion couplings

Not common in the MSSM, but possible in 2HDM/NMSSM

General 2HDM: Yukawa Couplings

The 2HDM with most general form of Yukawa couplings:

$$\begin{split} -\mathcal{L}_{\mathrm{Y}} &= \frac{1}{\sqrt{2}} \overline{D} \Big[\kappa^{D} s_{\beta-\alpha} + \rho^{D} c_{\beta-\alpha} \Big] Dh + \frac{1}{\sqrt{2}} \overline{D} \Big[\kappa^{D} c_{\beta-\alpha} - \rho^{D} s_{\beta-\alpha} \Big] DH + \frac{\mathrm{i}}{\sqrt{2}} \overline{D} \gamma_{5} \rho^{D} DA \\ &+ \frac{1}{\sqrt{2}} \overline{U} \Big[\kappa^{U} s_{\beta-\alpha} + \rho^{U} c_{\beta-\alpha} \Big] Uh + \frac{1}{\sqrt{2}} \overline{U} \Big[\kappa^{U} c_{\beta-\alpha} - \rho^{U} s_{\beta-\alpha} \Big] UH - \frac{\mathrm{i}}{\sqrt{2}} \overline{U} \gamma_{5} \rho^{U} UA \\ &+ \frac{1}{\sqrt{2}} \overline{L} \Big[\kappa^{L} s_{\beta-\alpha} + \rho^{L} c_{\beta-\alpha} \Big] Lh + \frac{1}{\sqrt{2}} \overline{L} \Big[\kappa^{L} c_{\beta-\alpha} - \rho^{L} s_{\beta-\alpha} \Big] LH + \frac{\mathrm{i}}{\sqrt{2}} \overline{L} \gamma_{5} \rho^{L} LA \\ &+ \Big[\overline{U} \big(V_{\mathrm{CKM}} \rho^{D} P_{R} - \rho^{U} V_{\mathrm{CKM}} P_{L} \big) DH^{+} + \overline{\nu} \rho^{L} P_{R} LH^{+} + \mathrm{h.c.} \Big]. \end{split}$$

- In principle full freedom to choose the 3x3 matrix ρ_F independently from κ_F (mass matrix)
- Charged Higgs couplings depend only on ρ_{F}
- Any model where ρ_F is not diagonal in the same basis as κ_F will have tree-level FCNC (-> strongly restricted from data)

Absence of tree-level FCNC -> 2HDM Types

To get rid of FCNC in a natural way, implement a (softly broken) Z_2 symmetry in a specific basis for Φ_1 and Φ_2

-> 2HDM "Types" depending on fermion Z₂ charges

$$\rho_F \propto \kappa_F = \frac{\sqrt{2}}{v} M_F$$

Barger, Hewitt, Philips, PRD41 (1990)

Type	U_R	D_R	L_R	$ ho^U$	$ ho^D$	$ ho^L$
Ι	+	+	+	$\kappa^U \cot eta$	$\kappa^D \cot eta$	$\kappa^L \cot \beta$
II	+	—		$\kappa^U \coteta$	$-\kappa^D \tan \beta$	$-\kappa^L \tan \beta$
III	+	_	+	$\kappa^U \cot eta$	$-\kappa^D \tan \beta$	$\kappa^L \cot eta$
IV	+	+	_	$\kappa^U \cot eta$	$\kappa^D \cot eta$	$-\kappa^L \tan \beta$

Type III = Type Y = "Flipped" Type

Type IV = Type X = "Lepton-specific"

Tree-level MSSM -> Type-II Yukawa couplings
Beyond tree-level this is broken by Δ_b -> More general couplings

Two-Higgs-doublet-Model Calculator (2HDMC)

• 2HDMC is a public C++ code for calculations in the general 2HDM

D. Eriksson, J. Rathsman (Lund), OS (Stockholm) [0902.0851] http://2hdmc.hepforge.org

 Official LHCHXSWG recommendations for the 2HDM Higgs cross sections and branching ratios

R. Harlander, M. Mühlleitner, J. Rathsman, M. Spira, OS, [1312.5571]

SusHi (xsection) + 2HDMC (decays) HIGLU (xsection) + HDECAY (decays)

 Charged Higgs cross section not part of the recommendations, but H⁺ decays are calculated both by 2HDMC and HDECAY

2014-09-17

H⁺ decays in 2HDM Type-I

H⁺ decays in 2HDM Type-II

 $M_h = 125 \text{ GeV}, \ M_H = M_A = M_{H^{\pm}}, \ \sin(\beta - \alpha) = 0.99, \ m_{12}^2 = M_A^2 c_\beta s_\beta$

H⁺ decays in 2HDM Type-III

H⁺ decays in 2HDM Type-IV

 $M_h = 125 \,\text{GeV}, \, M_H = M_A = M_{H^{\pm}}, \, \sin(\beta - \alpha) = 0.99, \, m_{12}^2 = M_A^2 c_\beta s_\beta$

The H⁺ -> A/H W⁺ channel

B. Coleppa, F. Kling, S. Su, [1408.4119]

• The 2HDM pseudoscalar can also be light $M_A = 50 \,\mathrm{GeV} \,(126 \,\mathrm{GeV})$

$$pp \to t\bar{b}H^- \to t\bar{b}AW^- \to W^+W^-b\bar{b}(b\bar{b}/\tau\tau)$$

 MC fast detector-level analysis with MG5 + Pythia + Delphes taking into account dominant backgrounds

Cut	Signal [fb]	$t\bar{t}$ [fb]	$t\bar{t} au\tau$ [fb]	$W(W)\tau\tau$ [fb]	S/B	S/\sqrt{B}
σ	100	$6.3\cdot 10^5$	247	2000	-	-
A: Identification $[Eq.(4.1)]$	0.45	23.4	0.58	0.078	0.02	1.62
$m_{\tau\tau}$ vs $m_{\tau\tau W}$ [Eq.(4.5)]	0.14	0.69	0.014	0.003	0.19	2.84
B: Identification $[Eq.(4.2)]$	0.39	0.35	0.697	0.072	0.35	6.49
$m_{\tau\tau}$ vs $m_{\tau\tau W}$ [Eq.(4.5)]	0.13	0.043	0.047	0.0062	1.35	7.31
C: Identification $[Eq.(4.3)]$	0.44	2.35	5.11	0.058	0.06	2.81
$m_{\tau\tau}$ vs $m_{\tau\tau W}$ [Eq.(4.5)]	0.12	0.30	0.31	0.0077	0.19	2.54

The H⁺ -> A/H W⁺ channel

Results for exclusion / 5 σ discovery with 100 fb⁻¹ at 14 TeV

• Results complementary to other searches, in particular the τv channel, with additional sensitivity at low tan β

Could also be relevant for light H⁺ with very light A₁ in the NMSSM J. Rathsman, T. Rössler [1206.1470]

Loop-induced H⁺ decays

- With two Higgs doublets, there are no tree-level couplings of H⁺W⁻Z or H⁺W⁻γ, but the decays H⁺ -> W⁺Z/γ are induced at 1-loop
 -> Similar to h -> γγ or h -> γZ
- In normal 2HDM and MSSM scenarios, both these decays have BR < 10⁻³ (typically much smaller)
- Can be enhanced in "stealth" model with suppressed tree-level couplings of second doublet to fermions

R. Enberg, J. Rathsman, G. Wouda, [1311.4367] See also: V. Ilisie, A. Pich, [1405.6639]

Conclusions

- Charged Higgs bosons remain important to search for as signs of physics beyond the SM
- Public codes for the calculation of the H⁺ branching ratios in popular models (MSSM, 2HDM, ...) are in an advanced stage
- Beyond the "traditional" fermionic decay modes, there are options for non-standard decays that can also be searched for:
 - Heavy H+ decays into SUSY particles
 - Non-standard decays of a light charged Higgs (cb / $W\gamma$)
 - H+ decays into 125 GeV Higgs / W (in remaining parameter space)
 - H+ decays into lighter scalars and W bosons, typically leading to different (complex) final states with multiple b/τ

BACKUP

MSSM Higgs sector

- Minimal SUSY (MSSM) -> two complex Higgs Doublets: H_u , H_d 8 scalar degrees of freedom, 5 physical Higgs bosons (SM: 4, 1)
- CP conservation: h, H (CP-even), A (CP-odd), and H^{\pm} $m_H > m_h$
- At tree-level, the Higgs sector is determined by two parameters: $M_A, \tan \beta$ or $M_{H^{\pm}}, \tan \beta$ $\tan \beta = \frac{v_u}{v_d}$
- Other Higgs masses are *predictions*:

$$\begin{split} M_{h,H}^2 &= \frac{1}{2} \left[M_A^2 + M_Z^2 \mp \sqrt{(M_A^2 + M_Z^2)^2 - 4M_A^2 M_Z^2 \cos^2 2\beta} \right] \\ M_{H^{\pm}}^2 &= M_A^2 + M_W^2 \end{split} \qquad \qquad M_{h,\text{tree}}^2 \leq M_Z^2 \cos^2 2\beta \leq M_Z^2 \end{split}$$

Charged Higgs bosons

Two kinematic regions for charged Higgs production

• Complementary production modes $pp \rightarrow H^{\pm}H^{\mp} \quad pp \rightarrow H^{\pm}W^{\mp}$

Charged Higgs bosons: Decay modes

MSSM Decay mode also 'fixed' by kinematics

 $\tan\beta > 1$

- Light charged Higgs tb τv_{τ} $BR(H^+ \to \tau^+ \nu_\tau) \simeq 1$ 10^{-1} $\chi_i^0 \chi_j^+$ Branching ratio Heavy charged Higgs 10^{-2} $BR(H^+ \to \tau^+ \nu_{\tau}) \simeq 0.1$ $\mu \nu_{\mu}$ 10^{-3} $BR(H^+ \to t\bar{b}) \simeq 0.9$ CS 200 300 600 400 500 $m_{H\pm}$ (GeV)
- In the NMSSM should be complemented with searches for $H^{\pm} \rightarrow A_1 W^{\pm} \qquad H^{\pm} \rightarrow H_1 W^{\pm}$

From branching ratios to MSSM parameter limits

