

Review of SM Higgs properties measured by ATLAS and CMS: couplings, spin, mass

Pavel Jež

Centre for Cosmology, Particle Physics and Phenomenology - CP3 Université catholique de Louvain

September 16, 2014 CHARGED 2014 Uppsala

Higgs boson in the SM

cross-section and BR

- ٠ Result of spontaneous symmetry breaking
- Mass to gauge bosons + unitarity at high energy
- ٠ Mass to fermions through Yukawa

Pavel Jež (UCL-CP3)

September 16, 2014 2 / 33

The collider and detectors

- proton-proton collisions
 @ 7 TeV in 2010 and 2011
- pp collisions @ 8 TeV in 2012
- Up to 15/30 interactions per beam collision in 2011/2012
- 5.08 +21.3 fb⁻¹ (ATLAS)
- 5.55 + 21.79 fb⁻¹ (CMS)
- O(10⁵) decays of H(125) $ightarrow b\bar{b}$
- O(10³) decays of H(125) $\rightarrow \gamma\gamma$

Pavel Jež (UCL-CP3)

Higgs properties (ATLAS+CMS)

September 16, 2014

3 / 33

Mass measurement

Motivation

- Mass of the boson is the last free parameter in the Standard Model
- Fundamental position in the SM:
 - Calculation of the H production and decay rates
 - Precise knowledge necessary to test the coupling structure

Mass measurement

Motivation

- Mass of the boson is the last free parameter in the Standard Model
- Fundamental position in the SM:
 - Calculation of the H production and decay rates
 - Precise knowledge necessary to test the coupling structure

Overview

- Exploit ${\sf H}
 ightarrow {\sf ZZ}
 ightarrow {\sf 4I}$ and ${\sf H}
 ightarrow \gamma\gamma$ channels
- full mass reconstruction, clean signal, excellent resolution
- Model independent measurement
 - Fit of a peak over smooth background
 - No assumption on production or decay yields
- Improved analyses of Run I data \Rightarrow twice better precision
- [Phys.Rev.D.90,052004(2014)](ATLAS), [CMS-PAS-HIG-14-009](CMS)

Extracting mass for individual channels Phys.Rev.D.90,052004(2014), CMS-PAS-HIG-14-009 $H \rightarrow \gamma\gamma$

- split into several (10 20) categories
- fit $m_{\gamma\gamma}$ distributions simultaneously
- signal shape model determined from MC
- background modeled by smooth function
- bias from choice of background model studied with MC

CN

Extracting mass for individual channels Phys.Rev.D.90,052004(2014), CMS-PAS-HIG-14-009 $H \rightarrow \gamma\gamma$

- split into several (10 20) categories
- fit $m_{\gamma\gamma}$ distributions simultaneously
- signal shape model determined from MC
- background modeled by smooth function
- bias from choice of background model studied with MC

$H \rightarrow ZZ \rightarrow 4I$

¢

- using matrix element approach to build discriminants against ZZ background
- mass is obtained via parameter estimation with multi-dimensional unbinned likelihoods

Higgs properties (ATLAS+CMS)

5 / 33

Results of 2D fits in ($\mu \times m_H$) plane Phys.Rev.D.90,052004(2014), CMS-PAS-HIG-14-009

- fix the relative signal yields between $\gamma\gamma$ and $Z\!Z$
- let the overall signal strength ($\mu = \sigma/\sigma_{
 m SM}$) and mass float
- Fixed σ_{SM} at ATLAS, mass dependent in CMS

CM.

6 / 33

Results of 2D fits in ($\mu \times m_H$) plane Phys.Rev.D.90,052004(2014), CMS-PAS-HIG-14-009

- fix the relative signal yields between $\gamma\gamma$ and $Z\!Z$
- let the overall signal strength ($\mu = \sigma/\sigma_{
 m SM}$) and mass float
- Fixed σ_{SM} at ATLAS, mass dependent in CMS

Mass combination

Phys.Rev.D.90,052004(2014), CMS-PAS-HIG-14-009

- Assume single state with mass m_H
- production and decay ratios can float in the fit
- separate μ per decay (both) and production tag (only $\gamma\gamma$ at CMS)

Mass combination

Phys.Rev.D.90,052004(2014), CMS-PAS-HIG-14-009

- Assume single state with mass m_H
- production and decay ratios can float in the fit
- separate μ per decay (both) and production tag (only $\gamma\gamma$ at CMS)

Compatibility of measurements in 2 channels Phys.Rev.D.90,052004(2014), CMS-PAS-HIG-14-009

- Using test statistics $q(m_H^{\gamma\gamma}-m_H^{4\prime})$
- 2 degrees of freedom $(m_{H}^{\gamma\gamma}$ and $\Delta m), m_{H}^{\gamma\gamma}$ is profiled

Compatibility of measurements in 2 channels Phys.Rev.D.90,052004(2014), CMS-PAS-HIG-14-009

- Using test statistics $q(m_H^{\gamma\gamma}-m_H^{4\prime})$
- 2 degrees of freedom $(m_{H}^{\gamma\gamma}$ and $\Delta m), m_{H}^{\gamma\gamma}$ is profiled

Spin and CP of the H boson

- SM: H boson is scalar $(J^P = 0^+)$
- testing compatibility of data with $J^P = 0^+, 0^-, 1^{+/-}, 2^{+/-}$
- various models for non-SM spin and parity
- exploiting kinematical observables in $\gamma\gamma$, $ZZ \rightarrow 4I$ and $WW \rightarrow I\nu I\nu$ channels
- first measurements of anomalous couplings

• Test statistics: $q = -2 \ln \frac{\mathcal{L}(J_{alt}^{P})}{\mathcal{L}(J^{P}=0^{+})}$ • exclusion level $1 - \alpha$: $CL_s = \frac{P(q > q_{obs}|J_{alt}^P + bkg)}{P(q > q_{obs}|0^+ + bkg)} < \alpha$ CMS 9 / 33

$$\begin{aligned} \mathcal{A}(X_{J=0} \to V_1 V_2) &\sim \quad v^{-1} \left(\left[a_1 - e^{i\phi\Lambda_1} \frac{q_{Z_1}^2 + q_{Z_2}^2}{(\Lambda_1)^2} \right] m_Z^2 \epsilon_{Z_1}^* \epsilon_{Z_2}^* \right. \\ &+ \quad \sum_{V_1 V_2} \left(a_2^{V_1 V_2} f_{\mu\nu}^{*(V_1)} f^{*(V_2),\mu\nu} + a_3^{V_1 V_2} f_{\mu\nu}^{*(V_1)} \tilde{f}^{*(V_2),\mu\nu} \right) \right) \end{aligned}$$

$$\begin{aligned} \mathsf{A}(X_{J=0} \to V_1 V_2) &\sim \quad \mathsf{v}^{-1} \left(\left[\mathbf{a}_1 - e^{i\phi\Lambda_1} \frac{q_{Z_1}^2 + q_{Z_2}^2}{(\Lambda_1)^2} \right] m_Z^2 \epsilon_{Z_1}^* \epsilon_{Z_2}^* \right. \\ &+ \quad \sum_{V_1 V_2} \left(a_2^{V_1 V_2} f_{\mu\nu}^{*(V_1)} f^{*(V_2),\mu\nu} + a_3^{V_1 V_2} f_{\mu\nu}^{*(V_1)} \tilde{f}^{*(V_2),\mu\nu} \right) \right) \end{aligned}$$

• $V_1V_2 \in \{ZZ, Z\gamma^*, \gamma^*\gamma^*\}$

A

CMS,

$$\begin{split} A(X_{J=0} \to V_1 V_2) &\sim v^{-1} \left(\left[a_1 - e^{i\phi\Lambda_1} \frac{q_{Z_1}^2 + q_{Z_2}^2}{(\Lambda_1)^2} \right] m_Z^2 \epsilon_{Z_1}^* \epsilon_{Z_2}^* \right. \\ &+ \left. \sum_{V_1 V_2} \left(a_2^{V_1 V_2} f_{\mu\nu}^{*(V_1)} f^{*(V_2),\mu\nu} + a_3^{V_1 V_2} f_{\mu\nu}^{*(V_1)} \tilde{f}^{*(V_2),\mu\nu} \right) \right) \end{split}$$

•
$$V_1 V_2 \in \{ZZ, Z\gamma^*, \gamma^*\gamma^*\}$$

• v : vev, $f^{(i)\mu\nu}$, $(\tilde{f}^{(i)\mu,\nu}) \sim$ (dual) field strength tensor

CMS

10 / 33

$$\begin{split} A(X_{J=0} \to V_1 V_2) &\sim v^{-1} \left(\left[a_1 - e^{i\phi \Lambda_1} \frac{q_{Z_1}^2 + q_{Z_2}^2}{(\Lambda_1)^2} \right] m_Z^2 \epsilon_{Z_1}^* \epsilon_{Z_2}^* \right. \\ &+ \left. \sum_{V_1 V_2} \left(a_2^{V_1 V_2} f_{\mu\nu}^{*(V_1)} f^{*(V_2),\mu\nu} + a_3^{V_1 V_2} f_{\mu\nu}^{*(V_1)} \tilde{f}^{*(V_2),\mu\nu} \right) \right) \end{split}$$

•
$$V_1 V_2 \in \{ZZ, Z\gamma^*, \gamma^*\gamma^*\}$$

- v: vev, $f^{(i)\mu\nu}$, $(\tilde{f}^{(i)\mu,\nu}) \sim$ (dual) field strength tensor
- a_1 : SM HZZ coupling (in SM $a_1=2$)

$$\begin{aligned} \mathcal{A}(X_{J=0} \to V_1 V_2) &\sim v^{-1} \left(\left[a_1 - e^{i\phi \Lambda_1} \frac{q_{Z_1}^2 + q_{Z_2}^2}{(\Lambda_1)^2} \right] m_Z^2 \epsilon_{Z_1}^* \epsilon_{Z_2}^* \right. \\ &+ \left. \sum_{V_1 V_2} \left(a_2^{V_1 V_2} f_{\mu\nu}^{*(V_1)} f^{*(V_2),\mu\nu} + a_3^{V_1 V_2} f_{\mu\nu}^{*(V_1)} \tilde{f}^{*(V_2),\mu\nu} \right) \right) \end{aligned}$$

•
$$V_1V_2 \in \{ZZ, Z\gamma^*, \gamma^*\gamma^*\}$$

- v: vev, $f^{(i)\mu\nu}$, $(\tilde{f}^{(i)\mu,\nu}) \sim$ (dual) field strength tensor
- a_1 : SM HZZ coupling (in SM $a_1=2$)
- $a_2^{V_1V_2}$: CP-even interaction, not in EWSB (in SM $10^{-3} 10^{-2}$)

CMS

$$\begin{aligned} \mathsf{A}(X_{J=0} \to V_1 V_2) &\sim v^{-1} \left(\left[\mathbf{a}_1 - e^{i\phi\Lambda_1} \frac{q_{Z_1}^2 + q_{Z_2}^2}{(\Lambda_1)^2} \right] m_Z^2 \epsilon_{Z_1}^* \epsilon_{Z_2}^* \right. \\ &+ \left. \sum_{V_1 V_2} \left(a_2^{V_1 V_2} f_{\mu\nu}^{*(V_1)} f^{*(V_2),\mu\nu} + a_3^{V_1 V_2} f_{\mu\nu}^{*(V_1)} \tilde{f}^{*(V_2),\mu\nu} \right) \right) \end{aligned}$$

•
$$V_1V_2 \in \{ZZ, Z\gamma^*, \gamma^*\gamma^*\}$$

• v: vev, $f^{(i)\mu\nu}$, $(\tilde{f}^{(i)\mu,\nu}) \sim$ (dual) field strength tensor

- a_1 : SM HZZ coupling (in SM $a_1=2$)
- $a_2^{V_1V_2}$: CP-even interaction, not in EWSB (in SM $10^{-3} 10^{-2}$)
- $a_3^{V_1V_2}$: CP-odd interaction, (3-loop correction in SM)

CMS

$$\begin{split} \mathcal{A}(X_{J=0} \to V_1 V_2) &\sim \quad v^{-1} \left(\left[a_1 - e^{i\phi \Lambda_1} \frac{q_{Z_1}^2 + q_{Z_2}^2}{(\Lambda_1)^2} \right] m_Z^2 \epsilon_{Z_1}^* \epsilon_{Z_2}^* \right. \\ &+ \left. \sum_{V_1 V_2} \left(a_2^{V_1 V_2} f_{\mu\nu}^{*(V_1)} f^{*(V_2),\mu\nu} + a_3^{V_1 V_2} f_{\mu\nu}^{*(V_1)} \tilde{f}^{*(V_2),\mu\nu} \right) \right) \end{split}$$

•
$$V_1V_2 \in \{ZZ, Z\gamma^*, \gamma^*\gamma^*\}$$

- v: vev, $f^{(i)\mu
 u}$, $(\tilde{f}^{(i)\mu,
 u})\sim$ (dual) field strength tensor
- a_1 : SM HZZ coupling (in SM $a_1=2$)
- $a_2^{V_1V_2}$: CP-even interaction, not in EWSB (in SM $10^{-3} 10^{-2}$)
- $a_3^{V_1V_2}$: CP-odd interaction, (3-loop correction in SM)
- Λ_1 : scale of new physics

$$\begin{aligned} \mathsf{A}(X_{J=0} \to V_1 V_2) &\sim v^{-1} \left(\left[\mathbf{a}_1 - e^{i\phi\Lambda_1} \frac{q_{Z_1}^2 + q_{Z_2}^2}{(\Lambda_1)^2} \right] m_Z^2 \epsilon_{Z_1}^* \epsilon_{Z_2}^* \right. \\ &+ \left. \sum_{V_1 V_2} \left(a_2^{V_1 V_2} f_{\mu\nu}^{*(V_1)} f^{*(V_2),\mu\nu} + a_3^{V_1 V_2} f_{\mu\nu}^{*(V_1)} \tilde{f}^{*(V_2),\mu\nu} \right) \right) \end{aligned}$$

•
$$V_1V_2 \in \{ZZ, Z\gamma^*, \gamma^*\gamma^*\}$$

• v: vev, $f^{(i)\mu\nu}$, $(\tilde{f}^{(i)\mu,\nu}) \sim$ (dual) field strength tensor

•
$$a_1$$
: SM HZZ coupling (in SM $a_1=2$)

- $a_2^{V_1V_2}$: CP-even interaction, not in EWSB (in SM $10^{-3} 10^{-2}$)
- $a_3^{V_1V_2}$: CP-odd interaction, (3-loop correction in SM)
- Λ_1 : scale of new physics

 a_i 's can in general be complex (loop contributions from light particles)

Spin 0 hypotheses testing

- Using $ZZ \rightarrow 4I$ channel
- [Phys.Lett.B726(2013),120-144](ATLAS), [Phys.Rev.D89(2014)092007](CMS)

Pavel Jež (UCL-CP3)

CMS

Spin 0 hypotheses testing

- Using $ZZ \rightarrow 4I$ channel
- [Phys.Lett.B726(2013),120-144](ATLAS), [Phys.Rev.D89(2014)092007](CMS)

CMS also excluded scalar decoupled from EWSB(0_{h}^{+}) with CL_s=95.5%

Pavel Jež (UCL-CP3)

Ā

11 33

Spin 0 measurements in $ZZ \rightarrow 4I$

- Constraints on mixture of scalar and other spin 0 states CMS-PAS-HIG-14-014
- Defining effective fractions: $f_{a_i} = \frac{|a_i|^2 \sigma_i}{|a_1|^2 \sigma_1 + |a_2|^2 \sigma_2 + |a_3|^2 \sigma_3 + \tilde{\sigma}_{\Lambda_1}/(\Lambda_1)^4}$
- Best fit assumes real phase $\phi_{a_i}=0$ or $\phi_{a_i}=\pi$
- Similar results with different methods

Pavel Jež (UCL-CP3)

CM

Spin 0 measurements in $ZZ \rightarrow 4I$

- Constraints on mixture of scalar and other spin 0 states CMS-PAS-HIG-14-014
- Defining effective fractions: $f_{a_i} = \frac{|a_i|^2 \sigma_i}{|a_1|^2 \sigma_1 + |a_2|^2 \sigma_2 + |a_3|^2 \sigma_3 + \tilde{\sigma}_{\Lambda_1}/(\Lambda_1)^4}$
- Best fit assumes real phase $\phi_{a_i} = 0$ or $\phi_{a_i} = \pi$
- Similar results with different methods

Pavel Jež (UCL-CP3)

- Landau-Yang theorem forbids spin 1 if $H \rightarrow \gamma \gamma$ decay exists BUT:
 - Different bosons for different final states
 - Multiple narrow states with different J^P

Parametrization:

 $A(X_{J=1} \rightarrow V_1 V_2) \sim \frac{b_1}{\left[(\epsilon_{V_1}^* q)(\epsilon_{V_2}^* \epsilon_X) + (\epsilon_{V_2}^* q)(\epsilon_{V_1}^* \epsilon_X)\right]} + \frac{b_2}{b_2} \epsilon_{\alpha \mu \nu \beta} \epsilon_X^{\alpha} \epsilon_{V_1}^{*\mu} \epsilon_{V_2}^{*\nu} \tilde{q}^{\beta}$

- Landau-Yang theorem forbids spin 1 if $H \rightarrow \gamma \gamma$ decay exists BUT:
 - Different bosons for different final states
 - Multiple narrow states with different J^P

$$\mathcal{A}(X_{J=1} \rightarrow V_1 V_2) \sim \frac{\mathbf{b}_1}{\left[(\epsilon_{V_1}^* q)(\epsilon_{V_2}^* \epsilon_X) + (\epsilon_{V_2}^* q)(\epsilon_{V_1}^* \epsilon_X)\right]} + \frac{\mathbf{b}_2 \epsilon_{\alpha \mu \nu \beta} \epsilon_X^{\alpha} \epsilon_{V_1}^{*\mu} \epsilon_{V_2}^{*\nu} \tilde{q}^{\beta}$$

•
$$V_1V_2 \in \{ZZ, WW\}$$

- Landau-Yang theorem forbids spin 1 if $H \rightarrow \gamma \gamma$ decay exists BUT:
 - Different bosons for different final states
 - Multiple narrow states with different J^P

$$\mathcal{A}(X_{J=1} \rightarrow V_1 V_2) \sim \frac{\mathbf{b}_1}{\left[(\epsilon_{V_1}^* q)(\epsilon_{V_2}^* \epsilon_X) + (\epsilon_{V_2}^* q)(\epsilon_{V_1}^* \epsilon_X)\right]} + \frac{\mathbf{b}_2 \epsilon_{\alpha \mu \nu \beta} \epsilon_X^{\alpha} \epsilon_{V_1}^{*\mu} \epsilon_{V_2}^{*\nu} \tilde{q}^{\beta}$$

- $V_1V_2 \in \{ZZ, WW\}$
- $\epsilon_{\mathbf{Y}}$: polarization vector of particle Y

- Landau-Yang theorem forbids spin 1 if $H \rightarrow \gamma \gamma$ decay exists BUT:
 - Different bosons for different final states
 - Multiple narrow states with different J^P

$$A(X_{J=1} \rightarrow V_1 V_2) \sim \frac{b_1}{\left[(\epsilon_{V_1}^* q)(\epsilon_{V_2}^* \epsilon_X) + (\epsilon_{V_2}^* q)(\epsilon_{V_1}^* \epsilon_X)\right]} + \frac{b_2 \epsilon_{\alpha \mu \nu \beta} \epsilon_X^{\alpha} \epsilon_{V_1}^{*\mu} \epsilon_{V_2}^{*\nu} \tilde{q}^{\beta}$$

- $V_1V_2 \in \{ZZ, WW\}$
- $\epsilon_{\mathbf{Y}}$: polarization vector of particle Y
- $\epsilon_{\alpha\mu\nu\beta}$: Levi-Civita tensor

- Landau-Yang theorem forbids spin 1 if $H \rightarrow \gamma \gamma$ decay exists BUT:
 - Different bosons for different final states
 - Multiple narrow states with different J^P

$$A(X_{J=1} \rightarrow V_1 V_2) \sim \frac{b_1}{\left[(\epsilon_{V_1}^* q)(\epsilon_{V_2}^* \epsilon_X) + (\epsilon_{V_2}^* q)(\epsilon_{V_1}^* \epsilon_X)\right]} + \frac{b_2 \epsilon_{\alpha \mu \nu \beta} \epsilon_X^{\alpha} \epsilon_{V_1}^{*\mu} \epsilon_{V_2}^{*\nu} \tilde{q}^{\beta}$$

- $V_1V_2 \in \{ZZ, WW\}$
- $\epsilon_{\mathbf{Y}}$: polarization vector of particle Y
- $\epsilon_{\alpha\mu\nu\beta}$: Levi-Civita tensor
- **b**₁: vector coupling

- Landau-Yang theorem forbids spin 1 if $H \rightarrow \gamma \gamma$ decay exists BUT:
 - Different bosons for different final states
 - Multiple narrow states with different J^P

$$A(X_{J=1} \rightarrow V_1 V_2) \sim \frac{b_1}{\left[(\epsilon_{V_1}^* q)(\epsilon_{V_2}^* \epsilon_X) + (\epsilon_{V_2}^* q)(\epsilon_{V_1}^* \epsilon_X)\right]} + \frac{b_2}{c_{\alpha\mu\nu\beta}} \epsilon_X^{\alpha} \epsilon_{V_1}^{*\mu} \epsilon_{V_2}^{*\nu} \tilde{q}^{\beta}$$

- $V_1V_2 \in \{ZZ, WW\}$
- ϵ_Y : polarization vector of particle Y
- $\epsilon_{\alpha\mu\nu\beta}$: Levi-Civita tensor
- b1: vector coupling
- **b**₂: pseudovector coupling

- Landau-Yang theorem forbids spin 1 if $H \rightarrow \gamma \gamma$ decay exists BUT:
 - Different bosons for different final states
 - Multiple narrow states with different J^P

$$A(X_{J=1} \rightarrow V_1 V_2) \sim \frac{b_1}{\left[(\epsilon_{V_1}^* q)(\epsilon_{V_2}^* \epsilon_X) + (\epsilon_{V_2}^* q)(\epsilon_{V_1}^* \epsilon_X)\right]} + \frac{b_2}{c_{\alpha\mu\nu\beta}} \epsilon_X^{\alpha} \epsilon_{V_1}^{*\mu} \epsilon_{V_2}^{*\nu} \tilde{q}^{\beta}$$

- $V_1V_2 \in \{ZZ, WW\}$
- ϵ_Y : polarization vector of particle Y
- $\epsilon_{\alpha\mu\nu\beta}$: Levi-Civita tensor
- b1: vector coupling
- **b**₂: pseudovector coupling

$$f_{b_2} = \frac{|b_2|^2 \sigma_2}{|b_1|^2 \sigma_1 + |b_2|^2 \sigma_2}$$
Pavel Jez (UCL-CP3) Higgs properties (ATLAS+CMS) September 16, 2014 13 / 33

Spin 1 results

- Using $ZZ \rightarrow 4I$ and $WW \rightarrow I\nu I\nu$ channels
- [Phys.Lett.B726(2013),120-144](ATLAS), [CMS-PAS-HIG-14-014](CMS)

Non-interfering spin 1 states

- Composite particles can have multiple narrow states with different J^P and nearly degenerate masses
 - ortho/para-positronium, χ_b, χ_c
- \bullet CMS analyzed for presence of second resonance with non-SM J^P close to dominant $0^+_{\rm m}$
 - Γ_{J^P} and $\Gamma_{0^+_{\mathrm{m}}} << |m_{J^P} m_{0^+_{\mathrm{m}}}| << 1 \text{ GeV}$
 - fractional cross-section $f(J^P) = \frac{\sigma_{J^P}}{\sigma_{a^+} + \sigma_{J^P}}$

Pavel Jež (UCL-CP3)

Interaction of general spin-2 resonance with a ZZ or WW pair:

$$\begin{split} \mathcal{A}(X_{J=2} \to V_{1}V_{2}) &\sim \Lambda^{-1} \left[2\mathbf{c_{1}}t_{\mu\nu}f^{*1,\mu\alpha}f^{*2,\nu\alpha} + 2\mathbf{c_{2}}t_{\mu\nu}\frac{q_{\alpha}q_{\beta}}{\Lambda^{2}}f^{*1,\mu\alpha}f^{*2,\nu\beta} \right. \\ &+ \mathbf{c_{3}}\frac{\tilde{q}^{\beta}\tilde{q}^{\alpha}}{\Lambda^{2}}t_{\beta\nu}\left(f^{*1,\mu\nu}f^{*2}_{\mu\alpha} + f^{*2,\mu\nu}f^{*1}_{\mu\alpha}\right) + \mathbf{c_{4}}\frac{\tilde{q}^{\nu}\tilde{q}^{\mu}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}f^{*(2)}_{\alpha\beta} \right. \\ &+ m_{V}^{2}\left(2\mathbf{c_{5}}t_{\mu\nu}\epsilon^{*\mu}_{V_{1}}\epsilon^{*\nu}_{V_{2}} + 2\mathbf{c_{6}}\frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}}t_{\mu\nu}(\epsilon^{*\nu}_{V_{1}}\epsilon^{*\alpha}_{V_{2}} - \epsilon^{*\alpha}_{V_{1}}\epsilon^{*\nu}_{V_{2}}) + \mathbf{c_{7}}\frac{\tilde{q}^{\mu}\tilde{q}^{\nu}}{\Lambda^{2}}t_{\mu\nu}\epsilon^{*}_{V_{1}}\epsilon^{*}_{V_{2}}\right) \\ &+ \mathbf{c_{8}}\frac{\tilde{q}^{\mu}\tilde{q}^{\nu}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}\tilde{f}^{*(2)}_{\alpha\beta} + \mathbf{c_{9}}t^{\mu\alpha}\tilde{q}_{\alpha}\epsilon_{\mu\nu\rho\sigma}\epsilon^{*\nu}_{V_{1}}\epsilon^{*\rho}_{V_{2}}q^{\sigma} \\ &+ \frac{\mathbf{c_{10}}t^{\mu\alpha}\tilde{q}_{\alpha}}{\Lambda^{2}}\epsilon_{\mu\nu\rho\sigma}q^{\rho}\tilde{q}^{\sigma}\left(\epsilon^{*\nu}_{V_{1}}(q\epsilon^{*}_{V_{2}}) + \epsilon^{*\nu}_{V_{2}}(q\epsilon^{*}_{V_{1}})\right) \right] \end{split}$$

September 16, 2014
Spin 2 hypotheses

Interaction of general spin-2 resonance with a ZZ or WW pair:

$$\begin{split} A(X_{J=2} \to V_{1}V_{2}) &\sim \Lambda^{-1} \left[2c_{1}t_{\mu\nu}f^{*1,\mu\alpha}f^{*2,\nu\alpha} + 2c_{2}t_{\mu\nu}\frac{q_{\alpha}q_{\beta}}{\Lambda^{2}}f^{*1,\mu\alpha}f^{*2,\nu\beta} \right. \\ &+ c_{3}\frac{\tilde{q}^{\beta}\tilde{q}^{\alpha}}{\Lambda^{2}}t_{\beta\nu} \left(f^{*1,\mu\nu}f^{*2}_{\mu\alpha} + f^{*2,\mu\nu}f^{*1}_{\mu\alpha} \right) + c_{4}\frac{\tilde{q}^{\nu}\tilde{q}^{\mu}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}f^{*(2)}_{\alpha\beta} \right. \\ &+ m_{V}^{2} \left(2c_{5}t_{\mu\nu}\epsilon^{*\mu}_{V_{1}}\epsilon^{*\nu}_{V_{2}} + 2c_{6}\frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}}t_{\mu\nu}(\epsilon^{*\nu}_{V_{1}}\epsilon^{*\alpha}_{V_{2}} - \epsilon^{*\alpha}_{V_{1}}\epsilon^{*\nu}_{V_{2}}) + c_{7}\frac{\tilde{q}^{\mu}\tilde{q}^{\nu}}{\Lambda^{2}}t_{\mu\nu}\epsilon^{*}_{V_{1}}\epsilon^{*}_{V_{2}} \right) \\ &+ c_{8}\frac{\tilde{q}^{\mu}\tilde{q}^{\nu}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}\tilde{f}^{*(2)}_{\alpha\beta} + c_{9}t^{\mu\alpha}\tilde{q}_{\alpha}\epsilon_{\mu\nu\rho\sigma}\epsilon^{*\nu}_{V_{1}}\epsilon^{*\rho}_{V_{2}}q^{\sigma} \\ &+ \frac{c_{10}t^{\mu\alpha}\tilde{q}_{\alpha}}{\Lambda^{2}}\epsilon_{\mu\nu\rho\sigma}q^{\rho}\tilde{q}^{\sigma} \left(\epsilon^{*\nu}_{V_{1}}(q\epsilon^{*}_{V_{2}}) + \epsilon^{*\nu}_{V_{2}}(q\epsilon^{*}_{V_{1}}) \right) \bigg] \end{split}$$

• $V_1V_2 \in \{ZZ, WW\}$

- t_{μν}: wave function of X
- $c_1 = c_5 \neq 0$: graviton with minimal couplings (2_m^+)
- $c_1 \ll c_5$: graviton + SM fields can propagate to extra dimensions (2_b^+)
- $c_i \neq 0$: models with higher-dimension operators

Pavel Jež (UCL-CP3)

¢

Higgs properties (ATLAS+CMS)

Spin 2 results: 2_m^+ model

C

- CMS: only in $\gamma\gamma$ channel [CERN-PH-EP/2014-117]
- ATLAS: combination of $\gamma\gamma$, ZZ and WW [Phys.Lett.B726(2013),120-144]
- Angular distribution in diphoton rest frame $(|\cos \theta^*|)$ sensitive to spin:
 - ATLAS: simultaneous fit to $m_{\gamma\gamma}$ and $m_{\gamma\gamma} \times |\cos \theta^*|$ distributions
 - CMS: divide events in bins of $|cos\theta^*|$ and fit $m_{\gamma\gamma}$ in each of them

Other spin-2 results and combinations

- C
- CMS tested also the spin 2 model with ED and with higher-dimension operators
- results combined from ZZ and WW channels

- Combination includes also 1^{\pm}
- All models excluded with $\mathsf{CL}_s \geq 99.9\%$

Pavel Jež (UCL-CP3)

¢

Higgs properties (ATLAS+CMS)

Non-interfering spin 2 states

C

- As for spin 1, CMS studied the presence of narrow spin-2 states close to main resonance
 - ► fractional cross-section $f(J^{P}) = \frac{\sigma_{J^{P}}}{\sigma_{0_{m}^{+}} + \sigma_{J^{P}}}$

Conclusion from J^{P} measurements

- Spin and parity tested in $\gamma\gamma,$ ZZ and WW channels
- Scalar hypothesis favoured by data
 - All alternatives rejected by > 99.9%
- CMS was studying also mixtures:
 - scalar-pseudoscalar
 - non-interfering spin 1 or 2 states
- Some limits on mixed states set but still large space for BSM physics

Combination of all channels

- Combination of many channels is used to check Higgs properties (signal strength, couplings)
- Most analyses use full Run I statistics (5+20 fb⁻¹)
 - CMS uses only 8 TeV data from $t\bar{t}H \rightarrow$ leptons
 - ATLAS uses only 8 TeV data from H
 ightarrow au au
 - final ATLAS results for most channels coming out this autumn

• [ATLAS-CONF-2014-009](ATLAS), [CMS-PAS-HIG-14-009](CMS)

Decay/ production tag	untagged	VBF	VH	tτH
$H \rightarrow \gamma \gamma$	both	both	both	CMS
$H ightarrow b ar{b}$			both	CMS
$H \rightarrow \tau^+ \tau^-$	both	both	both	CMS
$H \rightarrow W^+ W^-$	both	both	CMS	CMS
$H \rightarrow ZZ$	both	both	both	CMS

. / 33

SM compatibility: signal strength ATLAS

Method

- Use all channels
- Test statistics q_{μ} , $\hat{\mu} = \sigma / \sigma_{\rm SM}$

CMS

13

SM compatibility: 2D signal strength

- Test statistics $q(\mu_{\rm ggH+ttH}, \mu_{\rm qqH+VH})$, 2 + 2 production modes grouped together
- Decays as in SM, cross-channel contamination evaluated from MC

Compatibility of couplings Scaling factors

$$N(xx \to H \to yy) \sim \sigma(xx \to H) \cdot \mathcal{B}(H \to yy) \sim \frac{\Gamma_{xx}\Gamma_{yy}}{\Gamma_{\text{tot}}}$$

- 8 independent parameters relevant for current searches
- Γ_{ZZ} , Γ_{WW} , $\Gamma_{\tau\tau}$, Γ_{bb} , $\Gamma_{\gamma\gamma}$, Γ_{gg} , Γ_{tt} , Γ_{tot}
- Not possible to extract those parameters at the moment
- Scaling factors for couplings: $\mathbf{g}_{i} = \kappa_{i} \cdot \mathbf{g}_{i}^{SM}$
- Introducing $\Gamma_{\rm BSM}$
- Following slides are **compatibility tests**, not measurements
- Significant deviation of κ 's from 1 would mean BSM physics

Re-fit of event yields in particular BSM framework would be also needed

Custodial symmetry

Testing $\lambda_{WZ} = \kappa_W / \kappa_Z$, κ_Z and κ_f

ATLAS

• fitting λ_{WZ} , κ_Z and $\kappa_F Z$

•
$$\lambda_{WZ} = 0.94^{+0.14}_{-0.29}$$

- $\kappa_{ZZ} = \kappa_Z^2 / \kappa_H = 1.41^{+0.49}_{-0.34}$
- $\lambda_{FZ} = \kappa_F / \kappa_Z \in [-0.91, -0.63] \cup [0.65, 1.00]$

Pavel Jež (UCL-CP3)

September 16, 2014

Custodial symmetry

Testing $\lambda_{WZ} = \kappa_W/\kappa_Z$, κ_Z and κ_f

ATLAS fitting λ_{WZ} , κ_Z and $\kappa_F Z$

•
$$\lambda_{WZ} = 0.94^{+0.14}_{-0.29}$$

٩

•
$$\kappa_{ZZ} = \kappa_Z^2 / \kappa_H = 1.41^{+0.49}_{-0.34}$$

• $\lambda_{FZ} = \kappa_F / \kappa_Z \in [-0.91, -0.63] \cup [0.65, 1.00]$

Data are consistent with custodial symmetry

Further tests assume

$$\kappa_W = \kappa_Z = \kappa_V$$

K

Pavel Jež (UCL-CP3)

Higgs properties (ATLAS+CMS)

September 16, 2014

Couplings to fermions and W/Z: 2D contours

- Assume common scaling factors for fermion and W/Z couplings: $\kappa_f,\,\kappa_V$
- $\Gamma_{\rm BSM}=0$
- $\Gamma_{gg} \sim \kappa_f^2$
- $\Gamma_{\gamma\gamma} \sim |\alpha\kappa_V + \beta\kappa_f|^2$ (W and t loop) $\Rightarrow \gamma\gamma$ sensitive to relative sign of κ_V and κ_f

Couplings to fermions and W/Z: 2D contours

- $\bullet\,$ Assume common scaling factors for fermion and W/Z couplings: $\kappa_f,\,\kappa_V$
- $\Gamma_{\rm BSM}=0$
- $\Gamma_{gg} \sim \kappa_f^2$
- $\Gamma_{\gamma\gamma} \sim |\alpha\kappa_V + \beta\kappa_f|^2$ (W and t loop) $\Rightarrow \gamma\gamma$ sensitive to relative sign of κ_V and κ_f

New physics in the loops: κ_g and κ_γ

- C
- Loop diagrams sensitive to new particles, κ_g and κ_γ allow contributions from new particles
- $\Gamma_{\rm BSM} = 0$, all other $\kappa_i = 1$

New physics in the loops: κ_g and κ_γ

- C
- Loop diagrams sensitive to new particles, κ_g and κ_γ allow contributions from new particles
- $\Gamma_{\rm BSM} = 0$, all other $\kappa_i = 1$

Non SM Higgs decays

C

- Assume tree-level couplings are SM
- fit for $\Gamma_{\rm BSM}$, κ_{γ} and κ_{g}

Non SM Higgs decays

C

- Assume tree-level couplings are SM
- fit for $\Gamma_{\rm BSM}$, κ_{γ} and κ_{g}

28 / 33

MS

Fermion coupling asymmetries

ATLAS

CMS

Pavel Jež (UCL-CP3)

September 16, 2014

C6 model @ CMS

• Assume 6 independent parameters: κ_V , κ_t , κ_b , κ_τ , κ_γ , κ_g ; $\Gamma_{BSM} = 0$

5 parameter model @ ATLAS

- Assume 5 independent parameters: κ_Z , κ_W , κ_t , κ_b , κ_τ ; Only SM particles in the loops
- Results on k_t from gg production

Coupling compatibility: summary

Tested also generic 7 parameter model (free total width)

ATLAS

Coupling compatibility: summary

• Coupling to W,Z and 3rd generation fermions tested with 10-15% precision

In all tests no statistically significant deviation from the SM observed

<u>Ъ</u>§

Summary

- Final Run 1 mass measurements available
 - measured with precision 2-3 ‰
 - uncertainty dominated by statistics
 - $\gamma\gamma$ and ZZ
 ightarrow 4/ results compatible within 2σ
- No statistically significant deviations from the SM couplings observed in any decay channels at both experiments
 - Constraints on 10-50% level
 - room for BSM
- Pure non-scalar hypotheses excluded
- Mixtures of states still allowed

Summary

- Final Run 1 mass measurements available
 - measured with precision 2-3 ‰
 - uncertainty dominated by statistics
 - $\gamma\gamma$ and ZZ
 ightarrow 4/ results compatible within 2σ
- No statistically significant deviations from the SM couplings observed in any decay channels at both experiments
 - Constraints on 10-50% level
 - room for BSM
- Pure non-scalar hypotheses excluded
- Mixtures of states still allowed

Tightening the constraints on Higgs boson couplings and J^P mixtures will be main goal of Run II, LHC upgrades and future machines

CMS

Additional material

Pavel Jež (UCL-CP3)

Higgs properties (ATLAS+CMS

September 16, 2014

34 / 33

CMS

References and further reading

- ATLAS preliminary combination: ATLAS-CONF-2014-009
- ATLAS mass measurement: CERN-PH-EP-2014-122
- ATLAS spin testing: Phys.Lett.B726(2013),120-144
- ATLAS results in H $\rightarrow \gamma\gamma$ channel: CERN-PH-EP-2014-198
- ATLAS results in H \rightarrow ZZ \rightarrow 4/ channel: CERN-PH-EP-2014-170
- CMS preliminary combinations: CMS PAS HIG-14-009
- CMS anomalous spin 0 in HZZ: CMS PAS HIG-14-014
- CMS anomalous spin 0 in HWW: CMS PAS HIG-14-012
- CMS results in H \rightarrow ZZ \rightarrow 4/ channel: Phys.Rev.D89(2014)092007
- CMS results in H $\rightarrow \gamma \gamma$ channel: CERN-PH-EP/2014-117
- Procedure for the LHC Higgs boson search combination: ATL-PHYS-PUB 2011-11, CMS NOTE 2011/005

Higgs cross-sections and BR's: CERN Yellow Report

Statistical combination methodology Based on the approach agreed by ATLAS and CMS in http://cdsweb.cern.ch/record/1379837

Likelihood

$$\mathcal{L}(\text{data}|\mu \cdot s + b, \theta) = \mathcal{P}(\text{data}|\mu \cdot s + b, \theta) \cdot p(\tilde{\theta}|\theta)$$

P... Product of probabilities over all channels and all bins (or all events)
 p(θ̃|θ)... Probability of observing measured value θ̃ of nuisance parameter θ

Excess

LS

Test statistics:
$$q_0 = -2 \ln \frac{\mathcal{L}(\mathrm{obs}|b,\hat{\theta}_0)}{\mathcal{L}(\mathrm{obs}|\hat{\mu}\cdot s+b,\hat{\theta})}, \ \hat{\mu} > 0$$

- $\mathcal{L}(\mathrm{obs}|b,\hat{ heta}_0)\dots$ maximal likelihood for background only hypothesis
- $\mathcal{L}(\operatorname{obs}|\hat{\mu} \cdot s + b, \hat{\theta}) \dots$ global maximal likelihood
- local p-value: $p_0 = \mathsf{P}(q_0 \geq q_0^{\mathrm{obs}} | b)$
- significance Z: $p_0 = \int_Z^\infty \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$

Statistical combination methodology

C

Based on the approach agreed by ATLAS and CMS in http://cdsweb.cern.ch/record/1379837

Signal model parameters limits

Test statistics:
$$q(a) = -2 \ln rac{\mathcal{L}(\mathrm{obs}|s(a)+b,\hat{ heta}_a)}{\mathcal{L}(\mathrm{obs}|s(\hat{a})+b,\hat{ heta})}$$

- The 68% (95%) CL on a given parameter of interest a_i : $q(a_i) = 1$ (3.84)
- For 2D contours, The 68% (95%) CL on a given parameter of interest a_i: q(a_i, a_j) = 2.3 (6.99)

CM

Higgs cross-section and BR

38 / 33

CMS

Higgs cross-section and width

September 16, 2014

Mass in the ZZ subchannels

Pavel Jež (UCL-CP3)

Limits on width

Constraints on H \rightarrow Z $\gamma^*/\gamma^*\gamma^*$

- \bullet Constraints on the fractional presence of $Z\gamma^*$ and $\gamma^*\gamma^*$
- Similar approach as before (assuming real phases)

Pair of spin-0 couplings

- Simultaneous presence of 2 anomalous ZZ couplings
- Profiling the phases of studied pair
- Other parameters have SM values

Combination with $WW \rightarrow I \nu I \nu$

C

- Also in CMS-PAS-HIG-14-012
- \bullet Assume same ratio of couplings in ZZ and WW channels
- Improving constraints wrt ZZ alone

Signal strength by production tag

CMS

