

Search for charged Higgs bosons using other final states

Carlos Sandoval

Universidad Antonio Nariño

on behalf of the ATLAS collaboration

CHARGED 2014, Uppsala, Sweden 16/09/2014

Introduction

- Many extensions of the SM have more than one Higgs boson
- In generic 2HDMs (including the MSSM), there are 5 Higgs bosons, 2 of them charged
- For a light charged Higgs boson:

- ★ The dominant decay for $tan(\beta) < 1$ is $H^+ \rightarrow cs$
- ★ The dominant decay for $tan(\beta) > 1$ is $H^+ \rightarrow \tau V$
- ★ H⁺→Wh° can also be sizeable and may appear in a multi-Higgs-boson cascade topology

Introduction

In this talk:

- Many extensions of the SM have more than one Higgs boson
- In the 2HDM and the MSSM there are 5 Higgs bosons, 2 of them charged
- For a light charged Higgs boson:

- ★ The dominant decay for $tan(\beta) < 1$ is $H^+ \rightarrow cs$
- ★ The dominant decay for $tan(\beta) > 1$ is $H^+ \rightarrow \tau \nu$ (ratio method)
- ★ H⁺→Wh° can also be sizeable and may appear in a multi-Higgs-boson cascade topology

The ATLAS detector

Recorded data corresponding to an integrated luminosity of 20.3 fb⁻¹ at \sqrt{s} =8 TeV and 4.7 fb⁻¹ at \sqrt{s} =7 TeV in Run 1 of the LHC

H+->cs selection

- Lepton + jets selection
- Jets:
 - \bigstar 4 or more jets (p_T > 25 GeV)
 - ★ 2 b-tagged jets (70% heavy flavour tagging efficiency)
- Electron channel:
 - ★ 1 electron with $p_T > 25$ GeV
 - ★ E_Tmiss > 30 GeV
 - ★ m_Te > 30 GeV
- Muon channel:
 - ★ 1 muon with p_T > 25 GeV
 - ★ E_Tmiss > 20 GeV
 - \star ET^{miss} + mT^{μ} > 60 GeV

H+->cs kinematic fit

- Fully reconstruct the ttbar system
- Kinematic fitter used to reconstruct mass of dijets from W/H⁺ boson candidates
- Lepton, E_T^{miss} and the 4 jets assigned to the decay particles of the ttbar system
- pz of the neutrino found by fixing mw (real part taken)
- Invariant mass of the two systems (b/v,bjj) to be within
 1.5 GeV of the top-quark mass

H+->cs kinematic fit

- The combination with the smallest χ_2 value is selected
- The distribution agrees well with the simulation
- Events are required to have $\chi_2 < 10$

- ★ p_T of the lepton and 4 jets allowed to vary around the measured values
- ★ Vector sum of momenta of remaining jets
- ★ Constrains the hadronic and leptonic top-quark candidates

H+->cs kinematic fit

- This selection has an efficiency of 63% for SM ttbar events
- The fit results in a 20-30% improvement in the dijet mass resolution
- After the fit, there is a better discrimination between the mass peaks of the W and H⁺ bosons

H+->cs results

- The QCD multi-jet background is estimated using a data-driven method
- The dijet mass distribution is measured from a control region where leptons are isolated
- The W+jets background is estimated using the charge asymmetry method

±9.5 %
+0.3, -0.6 %
+0.1, -0.3 %
±0.9 %
±4.3 %
±3.1 %
±8.8 %

Shape independent	
b-tagging efficiency (b-jets)	±11 %
b-tagging efficiency (c-jets)	±2.4 %
b mistag rate	±1.8 %
Lepton identification	±1.4 %
Lepton reconstruction	±1.0 %
t-quark mass	±1.9 %
tt cross-section	+10, -11 %
Luminosity	+3.9 %

H+->cs limits

- Upper limits on
- •Br(t→H+b) extracted as a function of m_{H+}
- It is assumed that the H⁺ boson always decays to csbar
- The probability for the background to produce the observed mass distribution is 67-71%: no significant deviation from the background
- Br(t→bH⁺) < 1.2% 5.1% for m_{H^+} =90 GeV to 150 GeV

Higgs mass	Expected limit (stat.⊕ syst.)	Observed limit (stat.⊕ syst.)
90 GeV	0.080	0.051
100 GeV	0.034	0.034
110 GeV	0.026	0.025
120 GeV	0.021	0.018
130 GeV	0.023	0.014
140 GeV	0.020	0.013
150 GeV	0.015	0.012

$H+->\tau\nu$ (ratio method)

- Alternative method: measure the ratio of event yields between two ttbar final states
- This allows for the cancelation of most systematic uncertainties
 - ★ W bosons decay equally to leptons from the 3 generations
 - ★ H⁺ boson may decay predominantly into τv
 - \bigstar An excess of ttbar events with at least one τ in the final state compared to events with only e or μ is a signature for the H⁺ boson

$$R_{l} = \frac{\mathcal{B}(t\bar{t} \to b\bar{b} + l\tau_{\text{had}} + N\nu)}{\mathcal{B}(t\bar{t} \to b\bar{b} + ll' + N\nu)}.$$

$H+->\tau\nu$ (ratio method)

- * W bosons decay equally to leptons from the 3 generations
- ★ H⁺ boson may decay predominantly into τv
- An excess of ttbar events with at least one τ in the final state compared to events with only e or μ is a signature for the H⁺ boson $\mathcal{B}(t\bar{t} \to b\bar{b} + l\tau_{\mu\nu} + N\nu)$

$$R_{l} = \frac{\mathcal{B}(t\bar{t} \to bb + l\tau_{\text{had}} + N\nu)}{\mathcal{B}(t\bar{t} \to b\bar{b} + ll' + N\nu)}.$$

$H+->\tau\nu$ (ratio method)

- * W bosons decay equally to leptons from the 3 generations
- ★ H⁺ boson may decay predominantly into τv
- \bigstar An excess of ttbar events with at least one τ in the final state compared to events with only e or μ is a signature for the H⁺

$H+->\tau\nu$ (ratio method) – Selection

- Jets:
 - \bigstar 2 or more jets (p_T > 20 GeV)
 - ★ Exactly 2 b-tagged jets
- Electron channel:
 - ★ 1 electron with E_T > 25 GeV trigger matched
- Muon channel:
 - ★ 1 muon with $p_T > 25$ GeV trigger matched
- Either:
 - \bigstar Exactly 1 τ -jet with p_T > 25 GeV or,
 - ★ Exactly one additional lepton (different flavour to the trigger matched)
- E_Tmiss > 40 GeV
- Events are categorised depending on the single lepton trigger that was fired

$H+->\tau v$ (ratio method) – OS and SS events

- ullet The majority of misidentified au jets come from jets
- It is impossible to accurately predict the fraction of all jet types (light quarks, heavy quarks, gluons)

$H+->\tau v$ (ratio method) – OS and SS events

- ullet The majority of misidentified au jets come from jets
- It is impossible to accurately predict the fraction of all jet types (light quarks, heavy quarks, gluons)
- But, the influence of all jet types other than light quark jets can be eliminated by categorising events as OS or SS
 - \bigstar OS: opposite sign (charge of the lepton compared to the charge of the τ jet)
 - \star SS: same sign (charge of the lepton compared to the charge of the τ jet)

$H+->\tau v$ (ratio method) – OS and SS events

- \bullet The majority of misidentified τ jets come from jets
- It is impossible to accurately predict the fraction of all jet types (light quarks, heavy quarks, gluons)
- But, the influence of all jet types other than light quark jets can be eliminated by categorising events as OS or SS
- Assume heavy quarks and gluon jets misidentified as τ jets contribute equally to OS and SS events assign negative weight to SS events. This is used throughout the whole analysis

H+->τν (ratio method) – Backgrounds

- Misidentified leptons
 - ★ Estimated from data using a loose selection on the leptons. Small contribution
- Misidentified τ jets
 - \bigstar Only 51% of selected τ jets in simulated ttbar events are matched to a truth τ
 - ★ Misidentification from heavy quarks and gluons removed by OS-SS
 - ★ Rate at which jets from light quarks are misidentified is measured in data using a W +2 jets selection and parametrised in bins of p_T^τ and number of tracks
- Backgrounds with real leptons and taus taken from simulation

$H+->\tau\nu$ (ratio method) – Results

• The event yields are split into contributions from ttbar events and all other SM processes

$$R_e = \frac{\mathcal{N}(e + \tau_{\text{had}})}{\mathcal{N}(e + \mu)}$$
 $R_\mu = \frac{\mathcal{N}(\mu + \tau_{\text{had}})}{\mathcal{N}(\mu + e)}$

Predicted SM and measured ratios:

Ratio	R_e	R_{μ}
SM value	0.105 ± 0.012	0.166 ± 0.017
Measured value	$0.115 \pm 0.010 \text{ (stat)}$	$0.165 \pm 0.015 \text{ (stat)}$

- Total systematic uncertainty ~10% for both
- Largest uncertainties: τ -ID efficiency, ttbar generator and parton shower variations and backgrounds with misidentified leptons
- Sensitivity of the analysis to charged Higgs bosons depends on the rate at which the ratios change with Br(t →b H⁺)

$H+->\tau\nu$ (ratio method) – Limits

- A profile likelihood ratio is used with R_e and R_μ as the discriminating variables
- Upper limits between 3.2%-4.4% can be placed on Br(t→b H⁺)
- Limits for H⁺ production can also be placed in the context of the m_h-max scenario of the MSSM

Multi-boson Higgs cascade

- Search for a multi-Higgs-boson cascade topology
- Assume there are other Higgs bosons but no particular model (m_{ho} assumed to be 125 GeV)
- Final state: W+W-bb

★ One of the W bosons is

w assumed to decay hadronically

★ The other W boson is assumed to decay leptonically

★ BDTs are used to distinguish the Higgs-boson cascade events from the ttbar events

Multi-boson Higgs cascade - Selection

- Lepton + jets selection
- Jets:
 - \bigstar 4 or more jets (p_T > 25 GeV)
 - ★ 2 b-tagged jets (70% heavy flavour tagging efficiency)
- Electron channel:
 - ★ 1 electron with $p_T > 25$ GeV
 - \star E_T^{miss} > 30 GeV
 - ★ m_Te > 30 GeV
- Muon channel:
 - ★ 1 muon with p_T > 25 GeV
 - ★ E_Tmiss > 20 GeV
 - \star E_T^{miss} + m_T $^{\mu}$ > 60 GeV

Multi-boson Higgs cascade - Reconstruction

- First we identify the leptonically-decaying W
- The 2 b-tagged jets are used to reconstruct the lightest Higgs boson candidate (h⁰)
- The hadronically-decaying W is identified from the remaining jets
- The charged Higgs boson candidate is constructed from the h⁰ and the W boson which gives the largest m_{H+}
- The heavy neutral Higgs boson (H⁰) is then formed as W+W-bb

Multi-boson Higgs cascade - MVA

- A MVA is used to distinguish the Higgs-boson cascade from ttbar
- 7 kinematic variables chosen as input to the BDT:
 - * mbb, mbbw, mbbww
 - $\star \Delta R_{bb}$
 - ★ Hadronic and leptonic m_t and their difference
- A different BDT is trained for each signal mass hypothesis

Multi-boson Higgs cascade - Backgrounds

- 3 control regions are used to validate the modeling of the SM backgrounds:
 - ★ CR1: at least 4 jets, exactly 1 lepton and no b-tagged jets (W+jets)
 - ★ CR2: at least 4 jets, exactly 1 lepton and exactly 1 b-tagged jet (ttbar)
 - ★ CR3: at least 4 jets, exactly 1 lepton, at least 2 b-tagged jet and m_{bb} > 150 GeV (ttbar)

Multi-boson Higgs cascade - Results

- The observed yields are found to be consistent with SM background expectations within uncertainties
- The 95% CL production cross section upper limits for the various signal hypothesis are obtained
- Compare limits to the production cross section of a heavy neutral SM-like Higgs boson
- The cross section upper limits observed are greater than the theoretical NNLO production cross sections for all mass points

Multi-boson Higgs cascade - Results

- Limits are not stringent enough to exclude models with SM-like production rates even with 100% BR for H⁰→H⁺W⁻ and H[±]→h⁰W⁺ and SM values for Br(h0→bb)
- Ratio of observed upper limits and theoretical production cross section of the heavy Higgs boson
- Limits are more stringent in the high mass region (but still > 1)

Summary

- Three different ATLAS searches for a charged Higgs boson were presented in this talk
- No excess with respect to the SM predictions is found
- Br(t \rightarrow bH⁺) x Br(H⁺ \rightarrow cs) < 1.2% 5.1% (m_{H+}=90-150 GeV)
- Br(t \rightarrow bH⁺) x Br(t \rightarrow $\tau\nu$) < 3.2% 4.4% (m_{H+}=90-160 GeV)
- Limits on the production cross section times the branching ratio for gg->H⁰->WH⁺->W⁺W⁻h⁰->W⁺W⁻bb range from 0.065 to 43 pb as a function of m_{H^+} and m_{H^0}

References

- H±→csbar: Eur.Phys.J.C, 73 6 (2013) 2465
- Ratio method: JHEP 1303 (2013) 076 (2013)
- Higgs-boson cascade: Phys. Rev. D 89, 032002 (2014)

Back-up

The ATLAS detector

- Inner detector:
 - \bigstar Coverage up to $|\eta|$ <2.5
 - ★ Provides additional z-vertex information
 - ★ Independent from the calorimeters
 - ★ Precision tracking and vertexing
- Calorimeters:
 - ★ High granularity calorimeter
 - ★ Fine longitudinal segmentation
 - ★ Readout cells: $\Delta \eta \times \Delta \phi \approx 0.025 \times 0.025$
 - ★ Good Had. calorimeter resolution
 - ★ Precise position measurement
- Muon spectrometer:
 - ★ Monitored drift tubes (MDT) for precision measurement

28

★ RPCs for triggering

H+->cs kinematic fit (p_z^{ν})

To obtain the longitudinal momentum of the neutrino:

$$\begin{array}{lcl} m_{W,true}^2 & = & m_{\ell \nu}^2 \\ \\ & = & m_{\ell}^2 - 2(p_x^{\ell}p_x^{\nu} + p_y^{\ell}p_y^{\nu}) + 2E_{\ell}\sqrt{(E_{\rm T}^{\rm miss})^2 + (p_z^{\nu})^2} - 2(p_z^{\ell}p_z^{\nu}). \end{array}$$

Which leads to a quadratic equation:

$$a = E_{\ell}^{2} - p_{z}^{v2}$$

$$b = -2p_{z}^{v} \left(\frac{m_{W,true}^{2} - m_{\ell}^{2}}{2} + p_{x}^{\ell} p_{x}^{v} + p_{y}^{\ell} p_{y}^{v} \right)$$

$$c = E_{\ell}^{2} E_{T}^{\text{miss}^{2}} - \left(\frac{m_{W,true}^{2} - m_{\ell}^{2}}{2} + p_{x}^{\ell} p_{x}^{v} + p_{y}^{\ell} p_{y}^{v} \right)^{2}$$

Two solutions for the longitudinal momentum are found:

$$p_{z_{1,2}}^{v} = \frac{-b \pm \sqrt{d}}{2a}$$
 $d = b^2 - 4ac$

- For each solution a W boson candidate is constructed
- When complex solutions are returned, the real part is used

H+->cs results (dijet mass)

- The dijet mass distribution is measured from a control region where leptons are isolated:
 - \star p_T of tracks in a cone of radius Δ R excluding the lepton satisfies:

$$0.1 < p_{\rm T}^{\Delta R=0.3}/p_{\rm T}(e,\mu) < 0.3.$$

★ Leptons are also required to have a large impact parameter w.r.t. the identified primary vertex:

$$0.2 \text{ mm} < |d_0| < 2 \text{ mm}$$

★ Finally, an impact parameter significance:

$$|d_0|/\sigma_{d_0} > 3$$

H+->cs results (charge asymmetry)

- The W+jets background is estimated using the charge asymmetry method
 - ★ The ratio between the number of positively and negatively charged W bosons is well modeled: $\frac{N_{W^+}}{N_{W^-}}$
 - ★ The difference between N_{W^+} and N_{W^-} from MC is replaced by the same difference but in data:

$$N_{W_{tot}} = \frac{N_{W^+} + N_{W^-}}{N_{W^+} - N_{W^-}} \times (N_{W^+} - N_{W^-})$$

$$N_{W_{tot}} = \frac{Rmc + 1}{Rmc - 1} \times (N_{Data^+} - N_{Data^-})$$

★ The normalisation of the MC W+jets estimation to the data driven estimation is then:

$$SF = \frac{N_{W_{tot}DD}}{N_{W_{tot}MC}}$$

H+->cs limits (expected number of events)

 Likelihood function to estimate the expected number of events as a function of the branching ratio:

$$\mathcal{L}(\mathcal{B},\alpha) = \prod_{i} \frac{\nu_{i}(\mathcal{B},\alpha)^{n_{i}} e^{-\nu_{i}(\mathcal{B},\alpha)}}{n_{i}!} \prod_{j} \frac{1}{\sqrt{2\pi}} e^{-\frac{\alpha_{j}^{2}}{2}}$$

- n_i is the number of events in bin i of the dijet mass distribution and j labels the sources of systematic uncertainties
- The number of expected signal+background events in each bin:

H+-> $\tau \nu$ (ratio method) – Selection – τ ID

- *τ* candidates:
 - \star Jets with 1 or 3 associated tracks and E_T > 10 GeV
 - ★ p_T > 20 GeV and $|\eta|$ < 2.3
- \bullet Hadronic τ decays are identified using a likelihood criterion designed to discriminate against quark and gluon initiated jets
- A working point with an efficiency of about 30% for hadronically-decaying τ leptons in $Z \rightarrow \tau \tau$ events is chosen
- Rejection factor of about 100-1000 for jets
- Only τ candidates that fulfill the likelihood criterion are referred to as τ jets

$H+->\tau\nu$ (ratio method) – Reconstruction

- m_{T2}^H is used as a selection variable
- It gives an event-by-event lower bound on the mass of the charged boson produced in the top decay $m_{T2}^H = \max_{\{\text{constraints}\}} \left[m_T^H(\vec{p_T}^{H^+}) \right]$

- The b-jets are assigned by selecting the combination that minimises the sum of the distances between the b-jet and either the lepton or the τ
- In simulated SM ttbar events, the efficiency of this association is about 70%

$H+->\tau\nu$ (ratio method) – Backgrounds – miss ID leptons

- Misidentified leptons Estimated from data 2 samples:
 - ★ Tight: mostly real leptons same selection as in the analysis
 - ★ Loose: mostly misidentified leptons looser isolation and identification requirements on the leptons
- The efficiencies p_r and p_m to be detected as a tight lepton are determined from data
- The number of misidentified leptons passing the selection can be calculated by weighting each event in the data sample with one lose lepton according to:

$$w_{lL} = \frac{p_{\rm m}p_{\rm r}}{(p_{\rm r}-p_{\rm m})}$$
 \bigstar For a loose but not tight lepton

$$w_{lT} = \frac{p_{\rm m}(p_{\rm r}-1)}{(p_{\rm r}-p_{\rm m})}$$
 \bigstar For a tight lepton

H+-> $\tau \nu$ (ratio method) – Backgrounds – mis ID τ

- Misidentified τ jets
- ★ Rate at which jets from light quarks are misidentified is measured in data using a W +2 jets selection:
 - ◆ Exactly 1 lepton with E_T or p_T > 25 GeV
 - lack At least one τ candidate
 - \spadesuit At least 2 jets in addition to the τ (not b-tagged)
 - ◆ E_T^{miss} > 40 GeV
- \star To reduce the contribution from events with a true τ :

$$m_{\rm T} = \sqrt{2p_{\rm T}^l E_{\rm T}^{\rm miss}(1 - \cos\Delta\phi_{l,\rm miss})} > 30 \,\,\mathrm{GeV}$$

$H+->\tau\nu$ (ratio method) – Results

- Sensitivity of the analysis to charged Higgs bosons depends on the rate at which the ratios change with Br(t →b H⁺):
 - ★ The presence of H^{+→} τv in a fraction of the top decays leads to an increase of the number of ttbar events with a lepton and a τ
 - ★ This leads to an increase of the ratios
 - ★ For $m_{H+}=150(160)$ GeV the rate at which the ratios change with the branching is 2(5)
 - times smaller than for m_{H+}=130 GeV
 - ★ The selection efficiencies are reduced for m_{H+} close to m_{top}

$H+->\tau\nu$ (ratio method) – Limits

$$R_{e+\mu} = \frac{\mathcal{N}(e + \tau_{\text{had}}) + \mathcal{N}(\mu + \tau_{\text{had}})}{\mathcal{N}(e + \mu) + \mathcal{N}_{\text{OR}}(\mu + e)}$$

Event yield after removing dilepton events that simultaneously fired both triggers

$H+->\tau\nu$ (ratio method) – Limits

- Limits for H⁺ production can also be placed in the context of the m_h-max scenario of the MSSM
 - ★ Theoretical uncertainties considered: 5% for one loop EW corrections missing from calculations, 2% for missing two loop QCD corrections
 - ★ If m_{h0} =125 GeV, it would imply $tan(\beta)>3$ and $m_{H+}<155$ GeV

