

Lauri Wendland

Helsinki Institute of physics for the CMS collaboration

Charged14 conference Uppsala, Sweden

Overview of the latest CMS H+ analyses:

- $H_+ \rightarrow \tau^+ v_{\tau}$ and $H_+ \rightarrow tb$ in leptonic final states, $m_{H_+} > m_t m_b$ (see talk by P. Vischia)
- $H_+ \rightarrow \tau^+ v_{\tau}$ in fully hadronic final state, $m_{H_+} < m_t m_b$ and $m_{H_+} > m_t m_b$ (this talk)
- $H_+ \rightarrow csbar$, $m_{H_+} < m_t m_b$ (see talk by G. Kole)
- Data-driven background measurements in the H+ searches (see talk by M.Kortelainen)

* Charge conjugation is implied throughout this talk

Overview of the $H^{+} \rightarrow \tau^{+}\nu_{\tau}$ (fully hadr.) analysis

M. Kortelainen

- For $H^+ \rightarrow \tau^+ v_{\tau}$ decay mode, the final state is the same for light and heavy H^+
 - Same methods can be used and only the thresholds need to be optimized
- Main backgrounds: QCD multijet, tt, and single top
 - Multijet background (reducible): shape and normalization measured from data More in talk by
 - EWK+ttbar with τ_h : shape and normalization measured from data
 - EWK+ttbar no τ_h : small background, mainly jet $\rightarrow \tau$ misid., estimated from simulation
- Speciality of the fully hadronic final state:
 - All neutrinos in the event come from H⁺ decay
 - I.e. can separate EWK+tt from signal with transverse mass, $m_T(\tau_h, E_t^{miss})$
 - This feature makes the fully hadr. final state for $H^+ \rightarrow \tau^+ \nu_{\tau}$ the most sensitive final state!
 - In this analysis, we are able to separate the $H^+ \rightarrow \tau^+ v_\tau$ signal from other possible H^+ signals since in the other H^+ signals the tau always comes from W decay and they are measured as part of EWK+ttbar with τ_h
- In this talk, results are shown for 2012 data for both light and heavy H⁺

Event selection overview

- Trigger: Single tau + E_T^{miss}
- Require one hadronically decaying ${\boldsymbol{\tau}}$
- Apply veto on isolated and identified e/μ
 - To select fully hadr. final state
- Require at least 3 jets (in addition to τ_{h}), out of which at least one is a b jet
 - To select ttbar-like event topology
 - Supresses DY, W+jets, and multijet backgrounds
- Require large E_T^{miss}
 - To supress multijet background
- Apply angular cuts on τ , jets and E_T^{miss}
 - To supress multijet background in the signal region
- After these selections, ttbar is the dominant background
- Shape analysis conducted on the transverse mass from τ_h and E_T^{miss}
- More detailed event selection in following slides

- Single tau + E_T^{miss} trigger
 - $\tau p_T > 35$ GeV, loose isolation on τ , and calorimetric $E_T^{miss} > 70$ GeV
- Particle-flow (PF) technique used
 - Combine the CMS subdetector information in an optimal way to identify electrons, muons, photons, charged hadrons and neutral hadrons
 - Construct composite objects such as taus, jets, and E_T^{miss} from these particles
- Primary vertex: choose vertex with highest $\Sigma_{tracks}(p_T)^2$
- Taus with hadron-plus-strips (HPS) algorithm
 - τ candidates are required to match to the trigger τ object
 - $p_T > 41 \text{ GeV}$, $|\eta| < 2.1$, and p_T (leading ch. particle) > 20 GeV
 - Reject electrons and muons
 - Require isolation isolation
 - 1 charged particle associated to the τ object
 - Helicity cut: R_{τ} ($p_{leading ch. particle} / p_{\tau jet}$) > 0.7
- Electrons and muons for vetoing:
 - Require $p_T > 15$ GeV (10 GeV for muons) and $|\eta| < 2.5$
 - Require isolation and identification

- Jets:
 - Ignore jets overlapping with selected with τ , i.e. $\Delta R(jet, \tau_h) < 0.5$
 - Require jet $p_T > 30$ GeV and $|\eta| < 2.4$
 - Jet energy corrections are applied
 - Require at least 3 jets passing above criteria
- b tag:
 - Discriminator based on secondary vertices and track impact parameter information
 - 0.1 % rate for udsg \rightarrow b (30-60 % efficiency for identifying b jets)
 - Require at least 1 of the selected jets passes b tagging
- E_T^{miss}:
 - PF E_T^{miss} used with jet energy corrections propagated to it
 - Require $E_T^{miss} > 60 \text{ GeV}$
- Pile-up mitigation:
 - Correct for the presence of charged and neutral particles from pile-up vertices in electron/muon/tau isolation and jet energy and identification

- In QCD multijet events:
 - The E_T^{miss} comes typically from overestimation of the τ_h energy
 - The p_T vector of the misidentified τ_h is typically almost back-to-back to E_T^{miss} vector in φ
 - This configuration maximizes the m_T and contaminates therefore the signal region
 - The p_T vector of the misidentified τ_h is typically almost back-to-back to a jet (recoiling jet) in ϕ
 - I.e. $\Delta \phi(E_T^{miss}, \tau_h) \sim 180^{\circ}$ and min($\Delta \phi(E_T^{miss}, jet_N)$) ~ 0°

- In QCD multijet events:
 - The E_T^{miss} comes typically from overestimation of the τ_h energy
 - The p_T vector of the misidentified τ_h is typically almost back-to-back to E_T^{miss} vector in ϕ
 - This configuration maximizes the m_T and contaminates therefore the signal region
 - The p_T vector of the misidentified τ_h is typically almost back-to-back to a jet (recoiling jet) in ϕ
 - I.e. $\Delta \phi(E_T^{miss}, \tau_h) \sim 180^{\circ}$ and min($\Delta \phi(E_T^{miss}, jet_N)$) ~ 0°
- This feature can be used to supress multijet events by cut on:

$$R_{bb}^{min} = \min\{ \operatorname{sqrt}\{ \Delta \phi_{MET, jet_N^2} + (180^{\circ} - \Delta \phi_{\tau, MET})^2 \} \}$$

where N = 1..3 highest- p_T jet in the event

- Additionally:
 - The E_T^{miss} can also come from the from underestimation of the τ_h energy
 - The p_T vector of the misidentified τ_h is almost collinear to E_T^{miss} vector in ϕ
 - This configuration minimizes the m_T, i.e. It does not contaminate the signal region, but causes a small correlation in the multijet measurement if a cut on R_{bb}^{min} is applied
 - The p_T vector of the misidentified τ_h is typically almost back-to-back to a jet (recoiling jet) in ϕ
 - I.e. $\Delta \phi(E_T^{miss}, \tau_h) \sim 0^{\circ}$ and min($\Delta \phi(E_T^{miss}, jet_N)$) ~ 180°
- This feature can be used to make a cut on:

$$R_{coll.}^{min} = min\{sqrt\{ (180^{\circ}-\Delta \phi_{MET' jet_N})^2 + \Delta \phi_{\tau,MET}^2 \}\}$$

where n = 1..3 highest-p_T jet in the event

Number of selected events from signal and multijet background with no angular cuts applied

Number of selected events from signal and multijet background with $R_{coll.}^{min} > 40^{\circ}$ and $R_{bb}^{min} > 40^{\circ}$ applied

• $R_{coll}^{min} > 40^{\circ}$ and $R_{bb}^{min} > 40^{\circ}$ used in the analysis

Systematic uncertainties

Signal	Signal	Signal	Multi-	$EWK+t\bar{t}$	$EWK {+} t\bar{t}$	•
H^+H^-	H^+W^-	H^+	jets	with $\tau_{\rm h}$	no $\tau_{\rm h}$	
1.5-1.8	1.3-1.5	1.8-3.0	0.5	1.2	1.4	
0.7 - 0.8	0.6-0.7	0.8 - 1.1	0.2		0.8	
2.6-3.3	2.5 - 2.8	2.9-4.2	1.2	2.5	2.8	
0.1	0.1	0.1	0.1		0.4	
				12		
				0.1		
6.0	6.0	5.9-6.0	0.8	6.0		
< 0.1	< 0.1	< 0.1	0.1		3.3	
< 0.1	< 0.1	< 0.1	< 0.1		1.1	•
0.1	0.1-0.3	0.1	6.9		17	
0.4 - 0.5	0.6-0.7	0.5-0.6	< 0.1		1.6	
0.3-2.6	2.7-5.2	0.3-2.7	1.8	5.8	2.0	•
2.6-5.2	2.0-3.0	1.6 - 2.1	1.4		3.2	•
1.1 - 1.8	0.5 - 1.3	0.7 - 1.5	1.4		3.2	
0.1 - 0.4	0.1-0.9	0.1 - 0.4	0.5		1.5	
5.9-20	4.7-5.3	4.6 - 5.4	3.5		5.0	
			•		6.8	
			+5.6 -6.8		+11 -6.6	
			4.6			
			3.0			
				< 0.1		
				2.0		
				1.2		
				$^{+14}_{-12}$		
0.1-0.9	0.1-0.8	0.1-0.6	0.1		2.9	
+5.2	+5.2		+1.8		+4.5	
-0.0	-0.0		-1.5		1.0	
					0.1	
2.6	2.6	2.6	0.8		2.6	
	Signal H^+H^- 1.5–1.8 0.7–0.8 2.6–3.3 0.1 6.0 < 0.1 < 0.1 0.4–0.5 0.3–2.6 2.6–5.2 1.1–1.8 0.1–0.4 5.9–20 0.1–0.9 $^{+5.2}_{-6.0}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Signal H^+H^- Signal H^+W^- Signal H^+ $1.5-1.8$ $1.3-1.5$ $1.8-3.0$ $0.7-0.8$ $0.6-0.7$ $0.8-1.1$ $2.6-3.3$ $2.5-2.8$ $2.9-4.2$ 0.1 0.1 0.1 6.0 6.0 $5.9-6.0$ < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 $0.1-0.5$ $0.6-0.7$ $0.5-0.6$ $0.3-2.6$ $2.7-5.2$ $0.3-2.7$ $2.6-5.2$ $2.0-3.0$ $1.6-2.1$ $1.1-1.8$ $0.5-1.3$ $0.7-1.5$ $0.1-0.4$ $0.1-0.9$ $0.1-0.4$ $5.9-20$ $4.7-5.3$ $4.6-5.4$ $0.1-0.9$ $0.1-0.8$ $0.1-0.6$ $+5.2$ -6.0 -6.0 -5.6 2.6 2.6 2.6	Signal H^+H^- Signal H^+W^- Signal H^+ Multi- jets $1.5-1.8$ $1.3-1.5$ $1.8-3.0$ 0.5 $0.7-0.8$ $0.6-0.7$ $0.8-1.1$ 0.2 $2.6-3.3$ $2.5-2.8$ $2.9-4.2$ 1.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.1 $0.1-0.3$ 0.1 <0.1 $0.4-0.5$ $0.6-0.7$ $0.5-0.6$ <0.1 $0.3-2.6$ $2.7-5.2$ $0.3-2.7$ 1.8 $2.6-5.2$ $2.0-3.0$ $1.6-2.1$ 1.4 $1.1-1.8$ $0.5-1.3$ $0.7-1.5$ 1.4 $0.1-0.4$ $0.1-0.9$ $0.1-0.4$ 0.5 $5.9-20$ $4.7-5.3$ $4.6-5.4$ 3.5 $0.1-0.9$ $0.1-0.8$ $0.1-0.6$ 0.1 $+5.2$ $+5.2$ -6.0 $+1.8$ -6.0 -6.0 $+1.8$ -1.5 -6.0 -1.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

- Note that some of the backgrounds include simulation related uncertainties
 - Multijets: through subtraction of impurity from simulated EWK+tt (subtraction causes these uncertainies to be anti-correlated with other samples)
 - EWK+ttbar with taus: simulation of tau decay
- Most uncertainties change the mT shape and are therefore treated as shape nuisances denoted by (S)
- Correlation is implied on the same line
- Dominating uncertainties:
 - Signal (tt→bbH+H-, tt→bbH+W-, pp->t(b)H+)
 - \circ τ ID and b tag
 - QCD multijets:
 - o Jet→τ mis-ID
 - \circ top p_T reweighting
 - shape difference between nonisol./isol. sample
 - EWK+tt genuine taus:
 - Approximation in E_T^{miss} part of trigger
 - shape difference between nonemb./emb. sample
 - EWK+tt mis-ID taus:
 - o jet→τ mis-ID
 - top p_T reweighting

- In the signal or background distributions, an uncorrelated nuisance parameter is assigned for each bin of the $m_{\rm T}$ templates
- In addition, for m_{H+}=180-600 GeV, the falling part of the m_T distribution in the backgrounds is fitted to p₀*exp{ -p₁*(m_T - 180 GeV) }
 - The relative syst. uncertainties are kept constant
 - The stat. uncertainties in the fit region are given by the uncertainties on the fit parameters

Fit on the falling part of the m_T distributions for the different backgrounds

N_{events} as function of cut flow

Number of selected events after all selections

	$N_{\mathrm{events}} \pm \mathrm{stat.} \pm \mathrm{syst.}$
Signal, $m_{\mathrm{H^+}} = 120\mathrm{GeV}$	$151 \pm 4 \ ^{+17}_{-18}$
Signal, $m_{\rm H^+} = 300 {\rm GeV}$	$168\pm2\pm16$
Multijet background (data)	$78\pm3\pm17$
EWK+tt with $\tau_{\rm h}$ (data)	$283 \pm 12 {}^{+55}_{-54}$
EWK+tīt no $\tau_{\rm h}$ (sim.)	$47 \pm 2 {}^{+11}_{-10}$
Total expected from the SM	$407 \pm 12 \ ^{+59}_{-58}$
Observed:	392

 Signal is normalized here for illustration purposes to: B(t→bH⁺)*B(H⁺→τ⁺ν_τ) = 0.01

or

 $\sigma(pp \rightarrow t(b)H^+)^*B(H^+ \rightarrow \tau^+ v_{\tau}) = 1 \text{ pb}$

- Signal is normalized here for illustration purposes to B(t \rightarrow bH⁺)*B(H⁺ \rightarrow τ ⁺ ν_{τ}) = 0.01 or σ (pp \rightarrow t(b)H⁺)*B(H⁺ \rightarrow τ ⁺ ν_{τ}) = 1 pb
- For $m_{H_{+}}$ =180-600 GeV, the fit on the m_T tail is used
- Signal separation from backgrounds improves as a function of m_{H+}

- The statistical analysis is done with a binned maximum-likelihood fit
- The 95 % CL limits are derived with modified frequentist CL_s criterion
- Model-indepenent limits:
 - $-B(t \rightarrow bH^{+})^{*}B(H^{+} \rightarrow \tau^{+}\nu_{\tau})$ for m_{H+}=80-160 GeV
 - $-\sigma(pp \rightarrow t(b)H^{+})^{*}B(H^{+} \rightarrow \tau^{+}\nu_{\tau})$ for m_{H+}=180-600 GeV
- Model-dependent limits:
 - Calculated for MSSM benchmark scenarios [LHCHXSWG YR3 CERN-2013-004, Carena et al., EPJ C 73 (2013) 2552]
 - $_{\rm o}~$ Updated $m_h^{\rm max},\,m_h^{\rm mod+},\,m_h^{\rm mod-},\,$ light stop, light stau, τ -phobic, and low m_H
 - Theoretical uncertainties of 21 % used for m_{H_+} =80-160 GeV and 32 % for m_{H_+} =180-600 GeV
 - Includes uncertainty from higher order ttbar corrections for ttbar production and 30 % uncertainty for pp → t(b)H⁺ production
 - Includes uncertainty on one-loop EWK diagrams, missing two-loop QCD diagrams, and Δ_b corrections for B(t \rightarrow bH⁺) and B(H⁺ $\rightarrow \tau^+ v_{\tau}$) ^[LHCHXSWG YR2 CERN-2012-002]

- 95 % CL upper limit on B(t \rightarrow bH⁺)*B(H⁺ \rightarrow τ ⁺ ν_{τ}): 1.2–0.16 % for m_{H+} = 80-160 GeV
- 95 % CL upper limit on $\sigma(pp \rightarrow tbH^+)^*B(H^+ \rightarrow \tau^+ v_{\tau})$: 0.38–0.026 pb for $m_{H_+} = 180-600 \text{ GeV}$

Limits for updated MSSM m_h^{max} scenario

- In this scenario, the X_t value is chosen to maximize m_h at large values of m_A
- The area between the red lines is the ($m_{H_{+}}$, tan β) area, where $m_h = 125.0 \pm 3.0 \text{ GeV}$
- m_{H_+} excluded for m_{H_+} <155 GeV

Limits for MSSM m_h^{mod+} scenario

- In this scenario, $|X_t/M_{SUSY}|$ is reduced compared to the m_h^{max} scenario and $X_t > 0$
- The area above the red line is the (m_{H_+} , tan β) area, where $m_h = 125.0 \pm 3.0 \text{ GeV}$
- $m_{H_{+}}$ almost completely excluded for $m_{H_{+}}$ <160 GeV

Limits for MSSM m_h^{mod-} scenario

- In this scenario, $|X_t/M_{SUSY}|$ is reduced compared to the m_h^{max} scenario and $X_t < 0$
- The area above the red line is the (m_{H_+} , tan β) area, where $m_h = 125.0 \pm 3.0 \text{ GeV}$
- $m_{H_{+}}$ almost completely excluded for $m_{H_{+}}$ <160 GeV

Limits for MSSM light stop scenario

- In this scenario, the gluon-gluon fusion Higgs boson production is suppressed
- The area above the red line is the (m_{H_+} , tan β) area, where $m_h = 125.0 \pm 3.0 \text{ GeV}$
- m_{H_+} excluded for m_{H_+} <160 GeV

Limits for MSSM light stau scenario

- In this scenario, the rate for $h \rightarrow \gamma \gamma$ decays is enhanced
- The area above the red line is the (m_{H_+} , tan β) area, where $m_h = 125.0 \pm 3.0 \text{ GeV}$
- $m_{H_{+}}$ almost completely excluded for $m_{H_{+}}$ <160 GeV

Limits for MSSM **τ**-phobic scenario

- In this scenario, the couplings to down-type fermions are suppressed
- The area above the red line is the (m_{H_+} , tan β) area, where $m_h = 125.0 \pm 3.0 \text{ GeV}$
- m_{H_+} excluded for m_{H_+} <155 GeV

- In this scenario, the discovered Higgs boson is the heavy CP-even Higgs boson
- The area between the red lines is the (m_{H_+} , tan β) area, where $m_h = 125.0 \pm 3.0 \text{ GeV}$
- $m_{H_{+}}$ excluded except for a tiny area between $m_{H_{+}}$ =150-155 GeV at tan β ~ 10

- Presented the search for charged Higgs bosons with H⁺ → τ⁺ν_τ in fully hadronic final state and 20 fb⁻¹ of sqrt(s)=8 TeV data
 - Majority of backgrounds are measured in data-driven way
 - Enhanced selection on angular cuts w.r.t. previous public results
 - First CMS public result on this final state for $m_{H+} > m_t m_b$
 - Falling part of m_T distribution fitted to account better for low number of events
 - Set new model-independent limits:
 - 95 % CL upper limit on B(t \rightarrow bH⁺)*B(H⁺ \rightarrow $\tau^+\nu_{\tau}$): 1.2 0.16 % for m_{H+} = 80..160 GeV
 - 95 % CL upper limit on $\sigma(pp \rightarrow tbH^+)^*B(H^+ \rightarrow \tau^+ v_{\tau})$: 0.38 0.026 pb for $m_{H^+} = 180..600 \text{ GeV}$
 - Limits also calculated in the MSSM benchmark scenarios
 - In all scenarios, light H+ almost excluded (m_{H_+} >150 GeV or m_{H_+} >155 GeV)
 - Low m_H scenario almost completely excluded
- Documentation for the preliminary results is available in CMS PAS HIG-14-020

Additional slides

Limits for other MSSM scenarios in m_A

