

Data-driven background measurements in CMS

Matti Kortelainen

Helsinki Institute of Physics

on behalf of the CMS collaboration

Charged2014: Prospects for Charged Higgs Discovery at Colliders, Uppsala

September 16, 2014

Introduction

- The following backgrounds are measured from data in CMS analyses
- $H^+ \rightarrow \tau \nu_{\tau}$, τ_h +jets final state (Lauri's talk)
 - CMS PAS HIG-14-020
 - Multijet events (jet misidentified as τ_h)
 - EWK+t\bar{t} events with genuine $\tau \rightarrow$ hadrons decay identified as τ_h
 - \star In this presentation EWK+t\bar{t} = SM t \bar{t} , W + jets, Z/ γ^* , single top, diboson
- $H^+ \rightarrow tb$ / $H^+ \rightarrow \tau \nu_{\tau}$, $\mu \tau_h$ final state (Pietro's talk)
 - CMS PAS HIG-13-026
 - Jet misidentified as τ_h (W + jets, $t\bar{t})$
 - $~Z/\gamma^* \to \tau\tau \to \tau_h \mu$
- Common elements
 - Fake-rate technique
 - Tau embedding technique

Reminder: $H^+ \rightarrow \tau v_{\tau}$, τ_h +jets final state analysis

- $1.\tau + E_{\rm T}^{\rm miss}$ trigger
- 2. τ_h identification, $p_T > 41 \text{ GeV}/c$
 - Tau polarization $R_{\tau} > 0.7$
- 3. Isolated e/ μ veto, $p_T > 15 \text{ GeV}/c$
- $4. \geq 3$ hadronic jets $p_T > 30$ GeV/c
- $5. \geq 1$ jet b-tagged
- 6. Missing $E_{\rm T} > 60 {\rm GeV}$
- 7. Angular cuts between τ_h /jets and E_T^{miss}

8. Shape analysis with transverse mass $m_T(\tau_h, E_T^{miss})$ distribution

$$- m_{\mathrm{T}} = \sqrt{2p_{\mathrm{T}}^{\tau_{\mathrm{h}}} E_{\mathrm{T}}^{\mathrm{miss}} (1 - \cos \Delta \phi(\vec{p}_{\mathrm{T}}^{\tau_{\mathrm{h}}}, \vec{E}_{\mathrm{T}}^{\mathrm{miss}}))}$$

Multijet background measurement

19.7 fb⁻¹ (8 Te

- Performed in bins of $\tau_h p_T$
- Non-negligible contribution from EWK+tt
 - \Rightarrow fit $E_{\rm T}^{\rm miss}$ templates
 - Multijet template from anti-isolated sample
 - \star Impurity from EWK+t \bar{t} (sim.) subtracted
 - EWK+tī template from simulation (isolated sample)

Multijet background measurement Estimate and validation

- Transverse mass distributions from anti-isolated sample after all selections in bins of $\tau_h \ p_T$
- Distributions weighted by the fake-rate probabilities and summed
- Dominant uncertainties
 - Simulation uncertainties affecting EWK+tt impurity (10%)
 - m_T shape difference between anti-isolated and isolated samples (5%)
 - \star Evaluated with same samples as the fake rate
- Cross check by comparing the the shape of m_T distribution from anti-isolated measurement to isolated τ_h
 - Control sample by reversing b-tagging

$EWK+t\bar{t}$ genuine τ background

- Background mainly from SM t \bar{t} , but also W + jets, Z/ γ^* , single top, VV events with a genuine τ_h
- Basic idea is to exploit lepton universality $\mathcal{B}(W \rightarrow \mu) = \mathcal{B}(W \rightarrow \tau)$
- Control sample: $\mu + \ge 3$ jets
- Tau embedding done at the particle-flow level
 - Tau decay simulated and reconstructed, with tau lepton having same momentum as muon
 - Tau polarization assuming $W\to \tau\nu$ decay
- Apply remaining event selections

$EWK+t\bar{t} \text{ genuine } \tau \text{ background} \\ \text{normalization and validation}$

Normalization

- $\tau + E_T^{miss}$ trigger efficiency
- Muon trigger and ID efficiency
- Correct for $W \rightarrow \tau \rightarrow \mu$ events
- Residual correction from comparing emb. and non-emb. tt
- Increase statistical precision by
 - Limit only to hadronic τ decays
 - Require $p_T^{\text{vis. }\tau} > 30$ GeV, weight appropriately
- Dominant uncertainties
 - Residual correction (14%)
 - $E_{\rm T}^{\rm miss}$ trigger treatment (12%)
- Validated by comparing embedded and non-embedded simulation

Misidentified τ_h background measurement

Fake rate

- First measure "jet $\rightarrow \tau$ probability"
- From $W+ \ge 1$ jet events
 - One isolated μ + \geq 1 jet
- From multijet events
 - Single-jet triggered events with ≥ 2 jets
- "Jet $\rightarrow \tau$ probability" parameterized as a function of the jet p_{T} , η , and radius $(R = \sqrt{\sigma_{\eta\eta}^2 + \sigma_{\phi\phi}^2})$
 - Using k-Nearest Neighbour (kNN) regression

HELSINKI INSTITUTE OF PHYSICS

Misidentified τ_h background measurement

Estimate and validation

- Select " $\ell + \ge 3$ jet" events
 - 1 isolated $e/\mu + E_T^{miss} + \ge 3$ jets $+ \ge 1$ b-tagged jets
 - Dominated by W + jets and $t\bar{t} \rightarrow \mu + jets$ events
- Apply to every jet the "jet $\rightarrow \tau$ probability"
- Jet quark/gluon composition differ between W+jet, multijet, and " $\ell + \ge 3$ jet" samples
 - Taken into account using weights from simulation
- Validated by applying the data-driven method to simulation and comparing with expectation from simulation using generator information

Sample	MC expectation	Estimated from MC	Estimated from data
Multijet	2341 ± 61	1983	1994
W + jets		2642	2499
Unweighted average		2312(±14%)	2246(±11%)
Weighted average		2095(±14%)	2145(±11%)
	Í 🕴 🚺	T T	
Closure test within uncertaintu			

$Z/\gamma^* \rightarrow \tau \tau \rightarrow \tau_h \mu$ background measurement

- Background from $Z/\gamma^* \to \tau\tau$ events, where
 - τ decays hadronically, identified as τ_h
 - other τ decays to a muon
- Shape of b-tagged jet multiplicity distribution from $Z/\gamma^* \to \mu\mu$ events using the tau embedding technique
 - Both muons replaced with particles from simulated tau-lepton decays
 - As in the CMS H $\rightarrow \tau \tau$ analysis
- Normalization taken from simulation
- Uncertainty on the shape from difference between embedded and simulated $Z/\gamma^* \to \tau\tau$

Summary

• Fake-rate technique

- Multijet background (τ_h +jets)
 - * Fake-rate probabilities from $E_{\rm T}^{\rm miss}$ template fits
 - \star Multijet events obtained by
 - ▷ Inverting τ_h isolation
 - ▷ Weighted with the fake-rate probabilities
- Jet misidentified as τ_h background ($\mu + \tau_h)$
- Tau embedding technique
 - EWK+t\bar{t} genuine τ_h background ($\tau_h+jets)$
 - $\star~\mu+\geq 3$ jets events and tau embedding method
 - \star Normalization: correct for various efficiencies
 - $-~Z/\gamma^* \rightarrow \tau\tau \rightarrow \tau_h \mu~(\mu{+}\tau_h)$
 - $\star\,$ Shape from $Z/\gamma^* \to \mu \mu$ events and tau embedding
 - \star Normalization from simulation

BACKUP MATERIAL

M.J. Kortelainen (HIP), Data-driven background measurements in CMS

cHarged 2014, 2014–09–16 13/15

