

Search for a low-mass charged Higgs boson ($H^+ \rightarrow c\bar{s}$) in $t\bar{t}$ events with CMS

Gouranga Kole

Tata Institute of Fundamental Research Mumbai, India (On behalf of the CMS Collaboration)

> CHARGED2014, Uppsala 16th September 2014

Outline

- ✓ Introduction
- Signal and Backgrounds
- ✓ CMS Detector
- ✓ Trigger and Datasets
- ✓ Object Identification
- ✓ Event Selection
- ✓ Control Plots
- $\checkmark t\bar{t}$ Event Reconstruction
- ✓ Results and Summary

Introduction

- In 2012, ATLAS and CMS discovered a new particle with mass ~125 GeV
- Within expt. uncertainties, this particle seems to be compatible with the standard model (SM) Higgs boson
- Still we know that the SM cannot be the full story having several missing links, such as dark matter and matter-antimatter asymmetry

Motivation for physics beyond the standard model (BSM)

- Many extensions to SM have been proposed to answer these questions
- MSSM (or 2HDM) is one such model that consists of two Higgs doublets resulting five scalars : three neutral and two charged Higgs (H^{\pm}) bosons
- Finding more higgs will be a definitive signal for new physics

Chasing the charged Higgs at LHC

 $m_{H^2} = 100 \text{ GeV/c}^2$

MSSM

- Production and decay rates at the tree level depend only on two parameters:
 - 1) Ratio of vacuum expectation values between two Higgs doublets (tan β)
 - 2) Mass of the *CP*-odd neutral Higgs boson (m_A)
- Two possible production mechanisms at LHC: \succ

For $m_{H^+} < m_t$: $pp \rightarrow t\bar{t} \rightarrow bH^{\pm}\bar{b}W^{\mp}$ with $t \rightarrow bH^{+}$ For $m_{H^+} \ge m_t \colon pp \to tbH^{\pm}$

Our focus is on the low-mass charged Higgs \succ boson ($m_{H^+} < m_t$)

For a small value of tan β (< 1), the dominant \succ decay channel is $H^+ \rightarrow c\bar{s}$

D0 Note 5715-CONF

Gouranga Kole

Backgrounds :

- Irreducible SM $t\bar{t} \rightarrow bWbW \rightarrow b\ell\nu bq\bar{q}'$
- Other major backgrounds: single top and W+jets
- Minor contributions from Z+jets and dibosons (WW, WZ, ZZ)

CMS Detector

- Total data in proton-proton collisions @ 8 TeV correspond to an integrated luminosity of 19.7 fb⁻¹
- Event triggered with a single muon with $p_T > 24$ GeV and $|\eta| < 2.1$
- Signal sample is generated with PYTHIA 6.4 and normalized using the same production cross-section as SM $t\bar{t}$
- Background modeling:

 $\Rightarrow t\bar{t}, W$ +jets and Z+jets are generated with MADGRAPH interfaced with PYTHIA 6.4

- ➡ UE tuning Z2* and CTEQ6M PDFs are used
- ➡ Single top samples generated with POWHEG

Object Identification

- Objects are reconstructed using information from various CMS subdetectors with the particle flow (PF) algorithm
- Muons are reconstructed by combining information from the tracker and the muon detector
- Electrons are identified by matching energy deposits in the electromagnetic calorimeter with tracks in the tracker
- Missing transverse energy (MET) is calculated as the negative vector sum of the transverse momenta of all PF objects
- ✓ Jets are reconstructed based on PF candidates using the anti-k_T algorithm with a radius parameter of 0.5

- * Jet p_{τ} > 30 GeV and $|\eta|$ < 2.5
- MET (PF) > 20 GeV
 - At least 2 b-tagged jets
 [discriminator > 0.679 (CombinedSecondaryVertexMedium) WP]

Data-MC Comparisons-I

Muon transverse momentum

Muon pseudorapidity

Data-MC Comparisons-II

tifr

Jet multiplicity

Missing transverse energy

Cutflow Plot

W/H Mass Reconstruction

- ✓ Fit inputs: muon, all jets passing jet selection, MET and the corresponding resolutions
- ✓ In the kinematic fit, b-jets are required to be b-tagged with the CSVM working point
- ✓ We constrain the mass of both hadronic and leptonic decaying top quarks
- ✓ No constraint is applied on the W mass as we expect H^+ in the dijet mass distribution

Jet distributions after the kinematic fit

Systematic Uncertainties

• JES uncertainty:

Jet energy scale uncertainty, evaluated as function of jet p_T and η , used as a shape uncertainty to the exclusion limit

• JER uncertainty:

Jet energy resolution in data is known to be worse than simulations, jets in MC samples are smeared according to:

 $p_T(rec) \rightarrow max[0.0, p_T(gen) - c \times (p_T(rec) - p_T(gen))]$

b-tagging uncertainty:

Data/MC scale factor for b-tagging efficiency and mis-tag rates used to rescale MC and the corresponding uncertainty is propagated

- Muon trigger, identification and isolation efficiency: 2% total using a tag and probe method
- Uncertainty due to top p_T re-weighting is used
- $t\overline{t}$ shape modeling uncertainties due to the variation of renormalization and factorization scales are used
- Uncertainties due to MadGraph-PYTHIA matching are also used

Systematic Uncertainties & Events Yield

	WH	$t\bar{t}_{\mu+ m jets}$	W+jets	Z+jets	Single top	Dibosons
JES+JER+MET	7.8	6.5	18.5	14.2	6.9	15.8
b-jet tagging	4.2	> 4.6	-	-	4.2	-
Jet→b mis-id	-	-	5.8	6.5	-	8.6
Lepton selections	2.0	2.0	2.0	2.0	2.0	2.0
Cross-section	6.0	6.0	5.0	4.0	6.0	10.0
MC Statistics	3.1	0.7	7.8	6.0	3.8	10.1
Top-Pt reweighting	1.8	1.9	-	-	-	-
Luminosity	2.6	2.6	2.6	2.6	2.6	2.6

Source	$N_{events} \pm Uncertainty$
HW, $M_H = 120 \ GeV, \mathcal{B}(t \to bH^+) = 0.2$	3670 ± 503
$SM t\bar{t}$	16911 ± 2163
W+Jets	242 ± 52
Z+Jets	29 ± 5
SingleTop	463 ± 50
Dibosons	5 ± 1
Total Bkg	17651 ± 2164
Data	17759

Summary

- A search has been performed for the light charged Higgs boson produced in a top-quark decay and subsequently decaying to cs
- Analyzed 19.7 fb⁻¹ of 8 TeV data in the muon+jet channel
- Control plots match well with the SM background expectations
- No excess or deficit of events, so put an upper limit on BR($t \rightarrow bH^+$)
- The expected limit is 2-5% and observed limit is 2-7% for a Higgs mass between 90 to 160 GeV
- We are working on the journal publication with additional improvement and inclusion of the electron channel

CMS is going to restart data taking in 2015 with higher center-of-mass energy $\sqrt{s} = 13 \ TeV$

Stay tuned!

Backup Slide

Type-I and Type-Y: BR($H^+ \rightarrow c\bar{s}$) is greater than 10 % for all values of tan β

Type-II and Type-X: BR($H^+ \rightarrow c\bar{s}$) is close to 100 % for tan $\beta < 1.0$

CHARGED2014