H->ZZ->4I (4mu) channel with the CMS experiment

FP7-EENPP, Coordination meeting

22-1-2014

Nicola De Filippis – Ahmed Abdelalim – Simranjit Chhibra

- Reham Aly

Helwan University

For WP1 group.

Outlines

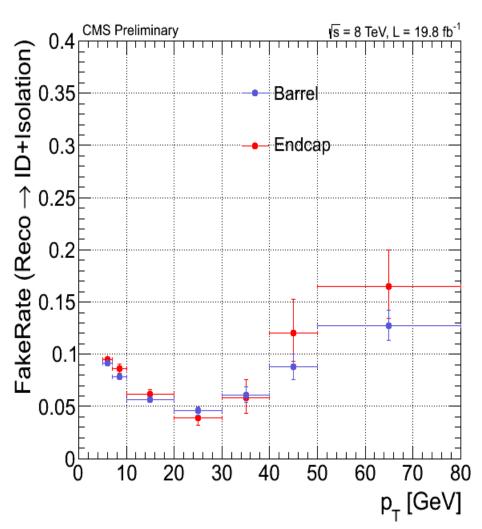
- Introduction
- Background estimation
- Muon Efficiency
- Final result
- P- value test
- Future work

Reham.M.Aly

Introduction

- Data: integrated luminosity of 5 fb-1 at 7 TeV in 2011, 19.8 fb-1 at 8 TeV in 2012
- ➤ Signatures: 4l(mu) final state "Golden channel"
- backgrounds:
 - irreducible ZZ
 - reducible Zbb, tt with leptons from b/c hadrons decays
 - reducible Z+jets, W+jets, QCD with fake leptons
- > Selection strategy and observables:
 - 4 well reconstructed and isolated leptons
 - leptons coming from the primary vertex
- > Results:
 - 4l invariant mass
 - p-value for discovery
 - sigma95/sigma SM for exclusion
 - discrimination of spin/parity hypotheses

Background

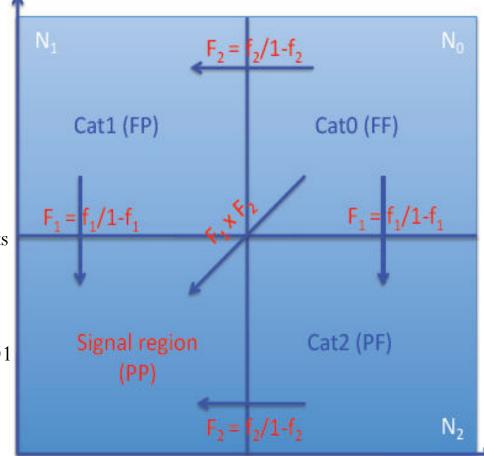

- irreducible ZZ background (From MC)
- Reducible Background

Zbb, tt, Z+jets, W+jets and QCD

We estimate these background from data by Fake rate method (FR)

Estimation of Z+X background from data using Fake rate method

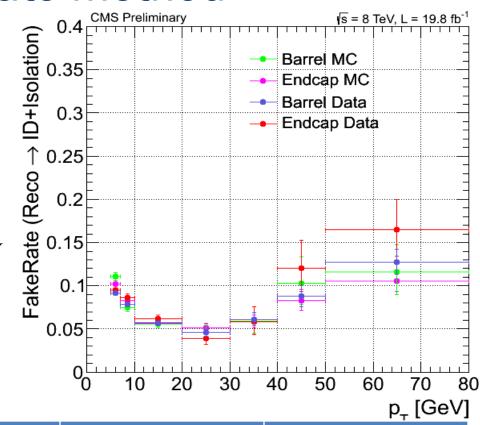
- Step1: Measuring the fake rate in 3 lepton phase space
 (Leading Z + one object)
- FR = No. of Jets passing identification and iso. / Total no. of jets
- Jet $\rightarrow \mu$ fake rate: measured using $Z \rightarrow \mu \mu + \mu$ and $Z \rightarrow ee$ + μ events


Estimation of Z+X background from data using Fake rate method

Leading Z +

Applying the measured FR in the regions defined as

- •Leading Z + 2 opposite charge objects
- •M 4l > 70 GeV
- Cat 0 (2P2F): Leading Z + 2 fakeable objects (O1 and O2)
- ■Both O1 and O2 should fail ID or ISo
- Cat 1 (3P1F): Leading Z + 1fakeable objects (O1) + 1 real object (O2)
- ■O2 should pass ID and ISO & O1 should fail eithe ID or ISO
- Cat 2 (3P1F): Leading Z + 1 real objects(O1) + 1 fakeable object (O2)
- ■O1 should pass ID and ISO & O2 should fail eithe ID or ISO


Final Estimation:

$$N_{tot}^{est} = N_0 \times F_1 \times F_2 + (N_1 - N_0 \times F_2) \times F_1 + (N_2 - N_0 \times F_1) \times F_2 = N_1 \times F_1 + N_2 \times F_2 - N_0 \times F_1 \times F_2$$

Estimation of Z+X background from data using Fake rate method

- ZZ part is the fraction of zz estimated by the same FR method from MC and subtracted from data
- Then we calculate the fake rate also for MC by same way
- Similar behavior but Not good agreement between Data & MC.

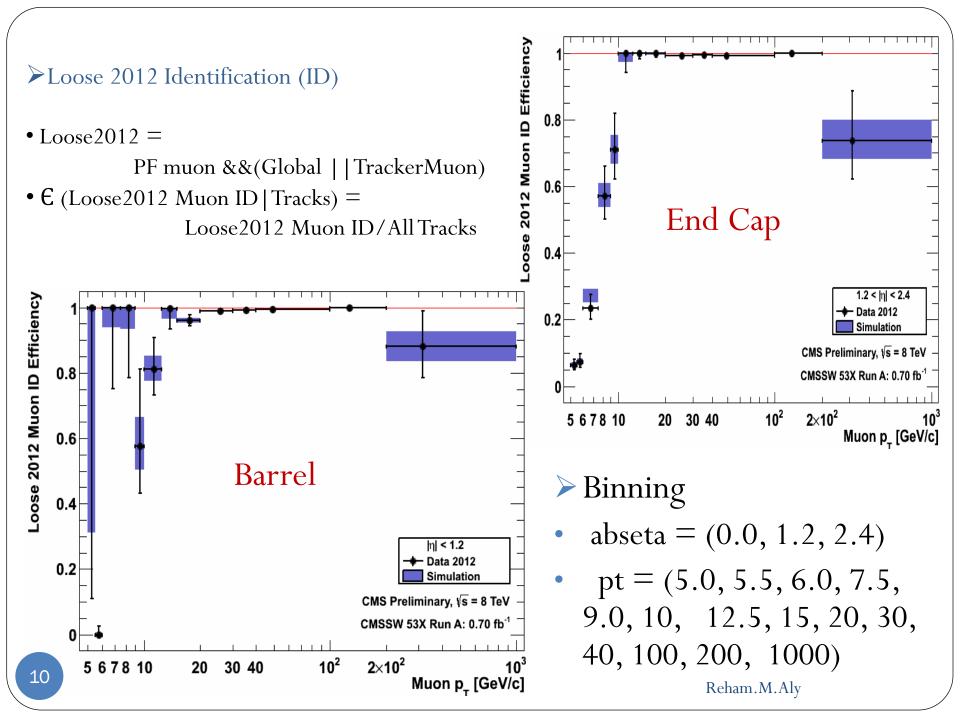
	ρ_{τ} (e.g.				
	8TeV	Data	ZZ part	Final Estimation	
Data	4 μ	4.03	1.26	2.77 ± 0.67	
MC	8TeV		Final Estimation		

MC	8TeV	Final Estimation
7	4 μ	1.41 ± 0.53

Selection Strategy

- Firstly: Muon selection "Good Muons"
 - PF muon
 - Global | | tracker
 - PT > 5 GeV
 - $|\eta| < 2.4$
 - Significance of the Impact Parameter SIP < 4
 - Relative PFIso < 0.4

Muon efficiency Tag & probe method

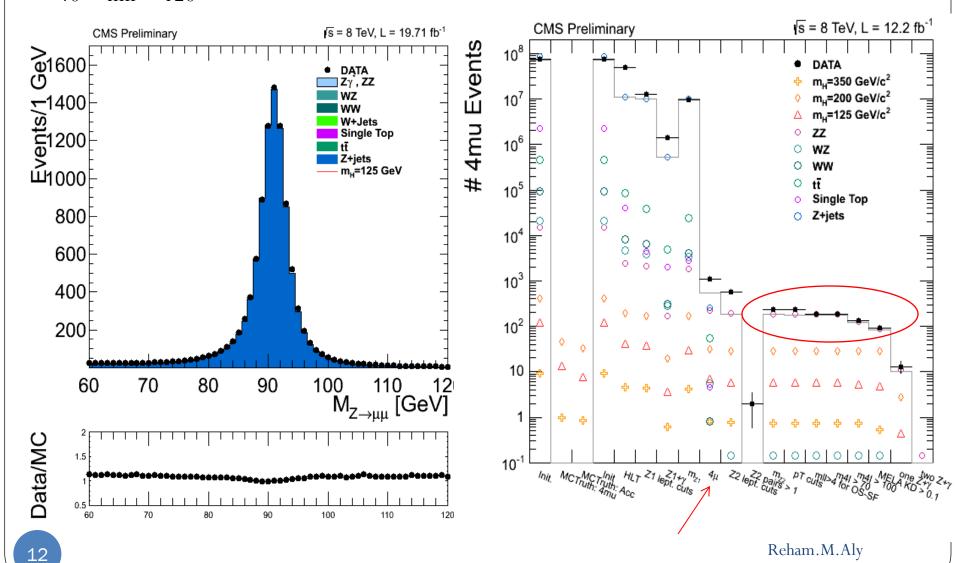

- This method for measuring the efficiency of muon in different stages of muon identification, SIP, Isolation and trigger for the muons used in the 4mu final state.
- Tag muon :Pass tight selection (PT>20)
- Probe :Loose selection (PT>5)
- Tag&&Probe Pair

Tag &Probe (TnP) pair with opposite charge & inv.Mass in70<M<130GeV

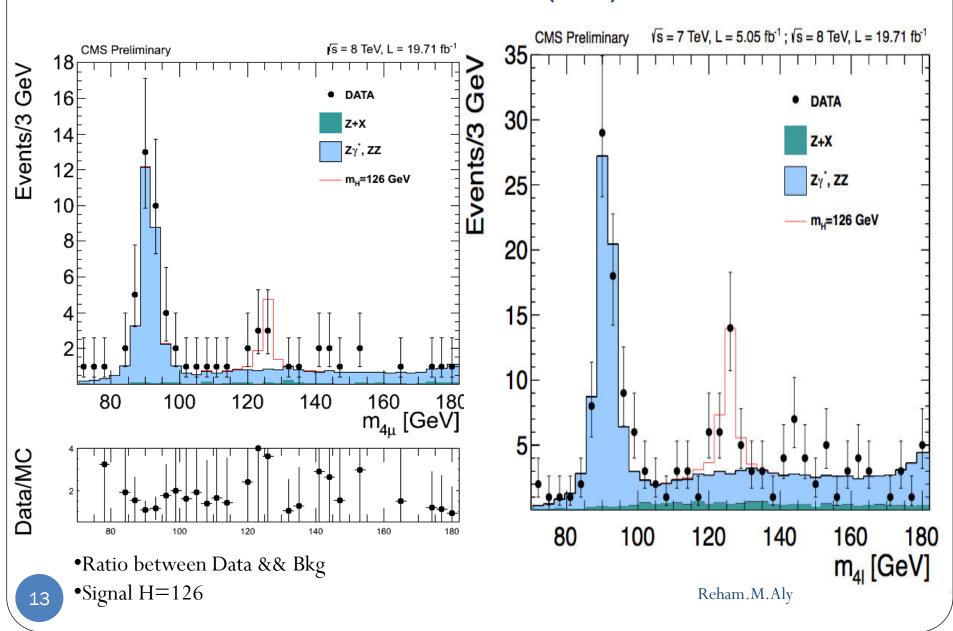
Typical decomposition of Muon efficiency

$$\varepsilon = \varepsilon(\mathsf{Tracking}) \times \varepsilon(\mathsf{ID}|\mathsf{Tracking}) \times \varepsilon(\mathsf{SIP}|\mathsf{ID}) \times \varepsilon(\mathsf{ISO}|\mathsf{SIP}) \times \varepsilon(\mathsf{trg}|\mathsf{ISO})$$

- Tracking efficiency —> provided by Tracking POG
- Loose Muon ID efficiency
- SIP efficiency
- Isolation efficiency
- Trigger efficiency


Selection Strategy

Secondly: Full selection


- > Z1 lept. cuts" Good leptons with mll closest to mZ
- ➤ Z1+#gamma" Include FSR in mll
 - ➤ Photon cleaning: (if photon —electron deltaR<0.15 photon is removed, select closest mass to Z (mll or mllgamma)).
- \rightarrow m_{Z1} cut" 40 < mll < 120 (Step 3)
- ➤ at least 4l" Four good leptons
- > Z2 lept. cuts" Second pair with mll closest to mZ
- > Z2 pairs > 1" Is there more than 1 Z2 pair?
- $m_{Z2} " 4 \le mll \le 100$
- ➤ mll>4 for OS-SF" All OS-SF pairs have mll > 4
- > m4l > 100

➤ Step 3

- Good leptons with mll closest to mZ
- 40 < mll < 120

Final Result @ 7+8 TeV (4L)

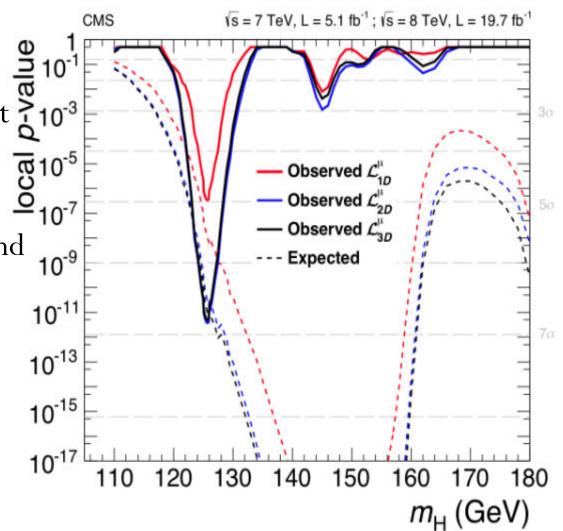

Final Result @ 7+8 TeV (4L)

Table 1: The number of estimated background and signal events and number of observed candidates, after final inclusive selection, in the full measurement range $121.5 < m_{4l} < 130.5 \text{ GeV}$. Signal and ZZ background are estimated from Monte Carlo simulation, while Z+X is estimated from data

Channel	4e	4μ	$2e2\mu$				
$5.05{\rm fb^{-1}}$ @ $7{\rm TeV}$							
ZZ background	0.3 ± 0.0	0.5 ± 0.0	0.7 ± 0.0				
Z + X	0.1 ± 0.0	0.0 ± 0.0	0.2 ± 0.0				
All background expected	0.3 ± 0.0	0.6 ± 0.0	0.9 ± 0.0				
$m_H = 125 \text{ GeV}$	0.5 ± 0.0	1.1 ± 0.0	1.3 ± 0.0				
$m_H=126~{ m GeV}$	0.5 ± 0.0	1.1 ± 0.0	1.4 ± 0.0				
Observed	0	2	3				
$19.71\mathrm{fb^{-1}} \otimes 8\mathrm{TeV}$							
ZZ background	0.9 ± 0.0	2.2 ± 0.1	2.9 ± 0.1				
Z + X	0.3 ± 0.0	0.2 ± 0.0	0.6 ± 0.0				
All background expected	1.2 ± 0.0	2.4 ± 0.1	3.5 ± 0.1				
$m_H = 125 \text{ GeV}$	2.3 ± 0.0	5.0 ± 0.0	6.1 ± 0.0				
$m_H=126~{ m GeV}$	2.6 ± 0.0	5.6 ± 0.0	7.1 ± 0.1				
Observed	4	6	10				
$5.05\mathrm{fb^{-1}}$ @ $7\mathrm{TeV}$ and $19.71\mathrm{fb^{-1}}$ @ $8\mathrm{TeV}$							
ZZ background	1.1 ± 0.0	2.8 ± 0.1	3.6 ± 0.1				
Z + X	0.4 ± 0.0	0.2 ± 0.0	0.8 ± 0.0				
All background expected	1.5 ± 0.0	3.0 ± 0.1	4.4 ± 0.1				
$m_H = 125 \text{ GeV}$	2.8 ± 0.0	6.0 ± 0.0	7.4 ± 0.0				
$m_H=126~{ m GeV}$	3.1 ± 0.0	6.7 ± 0.0	8.4 ± 0.1				
Observed	4	8	13				

Final Result @ 7+8 TeV

- P- value test:
- "What are the chances that $\frac{2}{5}10^{-3}$ the higgs boson doesn't exist given my data"
- Probability that background fluctuate to give an excess of events equal or larger than what observed

Future plan

- Spin/parity hypotheses study for Higgs
- ➤ Muon efficiency on full data (Run ABCD)
- High mass Higgs boson
- ➤ Data cards for Significance of discovery and exclusion

Thanks To

- Nicola De Filippis
- Ahmed Abdelalim
- Simranjit Chhibra

