# The Elementary Particles in our Universe

**Augusto Ceccucci / CERN** 

#### **Contents**

- The beginning of Particle Physics
- The three frontiers
- Standard Theory
- CERN: Accelerators & Experiments
- The Higgs Boson
- Neutrinos....

# Particle Physicists

What are the fundamental constituents of matter?

What are the forces mediating the interactions between elementary particles??



## The number of particles considered fundamental has evolved with time...



#### **Matter Constituents**



Bound state of 3 quarks = Baryon
Bond state of quark anti-quark = Meson

#### The Beginnings

#### **Carl Anderson**



### Cloud Chamber for the study of cosmic rays



Positron (1932) Mesotrone (now Muon) 1936

#### Discovery of the pion



Pion decay in a nuclear emulsion Lattes, Occhialini, Powell, 1947



## 1947: Discovery of the K mesons



Rochester & Butler:

Cloud chamber exposed to cosmic rays

#### With Hindsight...



Leprince-Ringuet e L'Héritiere, Camera di Wilson, 1943 Diffusion of positively charged particles on atomic electrons. Assuming elastic diffusion:

990 m<sub>e</sub> ~ 500 MeV ...with hindsight ... Perhaps Kaons were discovered even before pions!

### Discovery of $\tau^{+}$ (now $K^{+} \rightarrow \pi^{+}\pi^{+}\pi^{-}$ )



| Old                                           | New                                                                     |
|-----------------------------------------------|-------------------------------------------------------------------------|
| Name                                          | Name                                                                    |
| τ                                             | $K_{\pi 3}$ : $K^+ {\longrightarrow} \pi^+ \pi^+ \pi^-$                 |
| V <sub>1</sub> <sup>0</sup>                   | $\Lambda^0 \!\! 	o \!\! p \pi^-$                                        |
| V <sub>2</sub> <sup>0</sup> (θ <sup>0</sup> ) | $K^0_S \rightarrow \pi^+\pi^-$                                          |
| ĸ                                             | $K_{\mu 2}$ : $K^+ \rightarrow \mu^+ \nu$                               |
|                                               | $\mathbf{K}_{\mu 3}$ : $\mathbf{K}^{+} \rightarrow \mu^{+} \pi^{0} \nu$ |
| χ (θ+)                                        | $\mathbf{K}_{\pi 2}$ : $\mathbf{K}^{+} \rightarrow \pi^{+} \pi^{0}$     |
| V+, Λ+                                        | $\Sigma^+ \rightarrow p\pi^0$ , $n\pi^+$                                |

"Stripped" emulsion technique, Bristol group, 1949 ...and then things moved fast thanks to accelerators...

### **Cosmic Rays**



## How can we measure cosmic rays?



#### Each second....

- ....for each square meter
  - ◆ ~200 Particles

- Where are they coming from ?
- What are they?
- Which information are they carrying?

#### Where are they from?

From the Sun



From Galaxies



From Supernovae



#### **Primary Cosmic Rays...**



### What do we observe? The products of their interactions Mont Blan 4807 m Nuclei, and elementary particles **Showers of** particles

#### Spark Chamber in action



#### **Principle of a Spark Chamber**



#### Other detectors....

•

Cloud Chamber

Geiger-Müller

**Elettrometer** 







#### **Cloud Chamber in action**



## How does a cloud chamber work?





#### Auger Observatory (Mendoza)



Over hundreds of square Km

 Measuring energies up to 10<sup>20</sup> eV

### Detectors of the Auger

Observatory

Surface: 3000 km<sup>2</sup>



#### **The Three Frontiers**



#### **Cosmic Frontier**



Map of the cosmic black body radiation:
~2.73 K (WMAP)



#### Fermi Telescope



#### Fermi satellite: map of $\gamma$ rays



#### The "Standard Theory"

 $1 \text{ eV} \sim 1.6 \ 10^{-19} \text{ J}$ 



#### **Elementary Particles**



## CERN: European Organization for Nuclear Research



21 Member States



Near Geneva across
Switzerland and France

CERN Mission Statement: Research, Technology, Collaboration, Education

#### **CERN Accelerators**



#### **Example of LHC experiment:CMS**

A modern experiments includes different detectors to measure different particles

We exploit the fact that different particles interact in a particular way with matter



#### Compact Muon Solenoid (CMS)



#### **Proton Proton Interactions in CMS**



How many p-p interaction can you find?

#### ATLAS Experiment: $Z \rightarrow e^+e^-$



Can you identify the electron pair?

#### $Z \rightarrow \mu^{+}\mu^{-}$



Muons ( $\mu$ ) are like electrons..but ~200 times heavier... Can you explain why they escape from the inner detectors?

### $W^+ \rightarrow e^+ \nu$



#### Can you see the neutrino (v)???

#### CMS: Events selected with μ<sup>+</sup> μ<sup>-</sup> pairs



How many "resonances" do you see?

#### **Particle Mass**

- Equivalence between mass and energy:
  - $\bullet$  E = mc<sup>2</sup>
- Only ~1% of the proton mass is due to the mass of the constituents (the quarks)
- ◆ The remaining 99% is due to dynamic effects
- Within the Standard Theory, elementary particles and fields have no mass
- To produce mass one needs to break necessario the electroweak symmetry (Higgs mechanism)

# Higgs Boson



Peter Higgs



### ...From the "Quantum Diaries" Blog















 Three Higgs give mass to the vector bosons and disappear... only one remains

# Discovery of Higgs-like boson: CERN July 4, 2012





**CMS** 

**ATLAS** 

# CMS: $H \rightarrow \gamma \gamma$



# $H \rightarrow Z Z^* \rightarrow \mu^+ \mu^- \mu^+ \mu^-$



# $H \rightarrow Z Z^* \rightarrow \mu^+ \mu^- \mu^+ \mu^-$



# $H \rightarrow ~Z~Z^* \rightarrow \mu^+~\mu^-~\mu^+~\mu^-$



# Frontiera dell'Intensita`: Neutrini



### Superkamiokande Neutrino Detector (Japan)

Where neutrino oscillations Where discovered

Do you know what the active detector medium is?



### **CERN Neutrinos to Gran Sasso:**



#### **Long Baseline neutrino beam**



Expect ~10  $v_{\tau}$  events in OPERA





### **CNGS:** secondary beam





### **Operazione SPS per CNGS**



## Dark MAtter? Dark Energy?



- Dark Matter is invisible matter, it does not emit light. Its evidence comes from the study of the motion of galaxies and groups of galaxies
- Dark Energy is the term introduced to justify the acceleration of the Universe expansion (is it equivalent to Einstein's cosmological constant)

### Summary

- This is a simple introduction meant to entice your interest
- During the semester we will explore many more aspects relating the infinitely small to the infinitely large
- Next Tuesday, to start with, we will have a special guest: distinguished theorist Chris Quigg telling us about the Higgs Boson, Symmetries and much more!