AFP Alignment

R. Staszewski

Optics stability

Alignment Precision

Alignmen Methods

Summary

AFP Alignment

Rafał Staszewski

Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences (IFJ PAN Cracow)

LHC FWD WG Meeting 19 - 20 February 2014

This talk is supported in part by NCN grant UMO-2012/05/B/ST2/02480

Introduction

AFP Alignment

- R. Staszewski
- Optics stability
- Alignment Precision
- Alignment Methods
- Summary

2 Alignment Precision

Alignment Methods

Contents

AFP Alignment

R. Staszewsk

Optics stability

Alignment Precision

Alignment Methods

Summary

D Optics stability

Alignment Precision

Uncertainty on magnets strengths

AFP Alignment

R. Staszewski

Optics stability

Alignment Precision

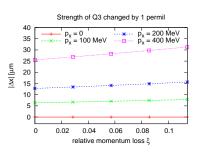
Alignment Methods

Summary

- Alignment makes sense only if the optics is well understood
- Is optics calibration needed? How stable the optics is?
- Typical claim of the magnet strength precision is 10⁻⁴
- Detailed investigation shows that this number is underestimated for quadrupoles
- The present study for AFP: quadrupole strength precision of 1 ‰

Results on optics stability

AFP Alignment


R. Staszewski

Optics stability

Alignment Precision

Alignmen Methods

ummary

- Change of magnets strengths leads to shift of proton position
- The effect depends mainly on p_T of the proton (increases with p_T for x and decreases for y), less on ξ
- For p_T < 200 MeV the effect on horizontal position is of the order of 10 – 15 μm
- Shift is small stability of optics is good
- A need for calibration is not to be expected
- The effect on physics should be small (steep p_T distribution)

Contents

AFP Alignment

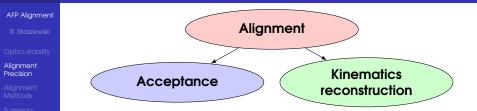
R. Staszewski

Optics stability

Alignment Precision

Alignmen[:] Methods

Summary


Optics stability

2 Alignment Precision

Alignment Methods

Effect of AFP misalignment

Effect via acceptance

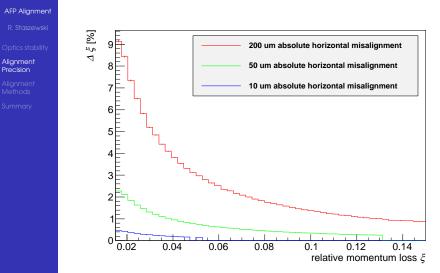
- Wrong alignment = wrong assumption on acceptance
- Leads to uncertainty on acceptance correction or theoretical prediction (depending on approach)
- Affects all measurements
- 100 µm horiz. shift results in cross section change by:
 - 1.5 % for processes with single tag
 - 2 % for processes with double tag
- Alignment w.r.t. the actual beam position needed

Degrees of freedom

AFP Alignment

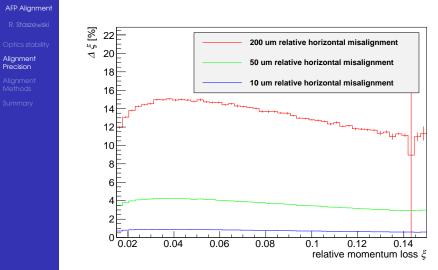
R. Staszewski

Optics stability

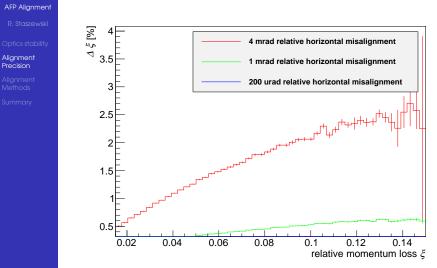

Alignment Precision

Alignmen Methods

Summary


- AFP detectors measure position and direction of proton trajectory (position measurements in two planes)
- Alignment precise knowledge about the position of the detectors, needed to determine proton trajectory parameters
- Relative alignment between stations affects trajectory direction
- Absolute alignment affects trajectory position
- Rotations of stations (in xy, xz and yz planes)
- Longitudinal alignment very precise from survey

Effect of absolute alignment


Affects small ξ values.

Effect of relative alignment

Affects whole ξ range.

Effect of rotations

Small effect on ξ .

Effect on physics

AFP Alignment

R. Staszewsk

Optics stability

Alignment Precision

Alignmen Methods

ummary

lumi	tag only	poor alignment	good alignment
low and medium	 measurement with single and double tag request cross sections charged particle multiplicity gap survival probability jet, photon p_T distributions event shapes, jet structure W charge asymmetry cross section ratios 	measurements for "tag only", but in few bins of ξ , t , M (possible even with 500 µm precision)	precise ξ , t , M distributions
high	not possible	not possible †	needed for all measurements†

[†] to be verified what precision is needed for high luminosity

Contents

AFP Alignment

R. Staszewski

Optics stability

Alignment Precision

Alignment Methods

Summary

Optics stability

Alignment Precision

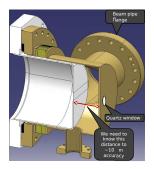
Alignment Methods

Hardware: BPM and LVDT

AFP Alignment

R. Staszewski

Optics stability


Alignment Precision

Alignment Methods

Summary

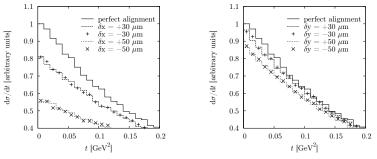
BPM (Beam Position Monitor):

- Measures the AFP position w.r.t. the actual beam
- Dedicated readout electronic for better precision
- Sub-µm precision expected
- BPM \rightarrow RP \rightarrow detector calibration less accurate (100 µm?), possible improvement with quartz window (fine with the LHC!)

LVDT (Linear Variable Differential Transformer):

- Fixed reference frame
- ALFA experience:
 - 35 µm for pr ecision
 - 250 µm for calibration

Kinematic peak method



R. Staszewsk

ptics stability

Alignment Precision

Alignment Methods

- Principle: reconstruct t distribution with different assumptions on detector position
- Successfully used in CDF experiment
- At the LHC sensitive to relative alignment between stations
- Better sensitivity in horizontal direction due to better spatial resolution
- 100 K soft SD events \rightarrow 30 μm precision (preliminary)

Hot spot method (M. Bruschi, P. Bussey)

AFP Alignment

R. Staszewski

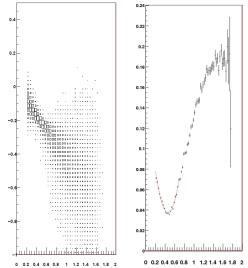
Optics stability

Alignment Precision

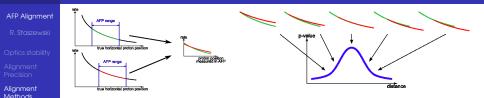
Alignment Methods

Summary

Left plot: hit pattern in AFP has a complex structure with a characteristic dense area (hot spot)


Right plot: rms width of the y distribution as a function of bins in x

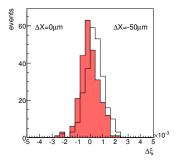
Clear minimum corresponding to the hot spot position


100K events \rightarrow 8 μm precision!

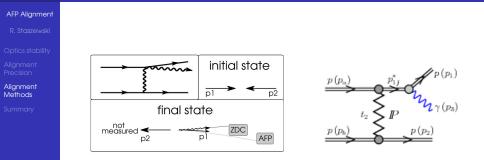
Small sensitivity to physics model and optics changes

Very promising! To be studied in more detail (*e.g.* effect of beam background)

Distribution shift method

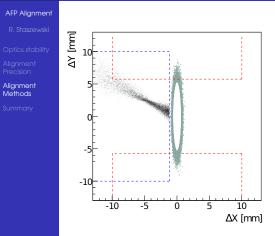

- Comparing distributions of the horizontal positions of registered protons from two runs (time periods) using the Wilcoxon-Mann-Whitney statistical test
- Search for translation that equalises distributions shapes
- Precision: 13 µm for 1M events, 25 µm for 100K, 100µm for 10K
- Relative alignment between runs and alignment stability tests
- No assumption on optics and physics
- No sensitivity to background, if constant in time
- New method, promising especially for stability tests
- Possible extension to 2D comparison

Exclusive $\gamma\gamma \rightarrow \mu\mu$ (O. Kepka)


AFP Alignment

- R. Staszewski
- Optics stability
- Alignment Precision
- Alignment Methods
- Summary

- Process measured in CMS without proton tagging (track based exclusivity cuts)
- Additional single proton tag
- Alignment is based on exclusivity of the event
- Comparison ξ measured in AFP with ξ from muon pair
- 100 events needed for 10 µm alignment precision
- Small cross section: 40 fb (pT > 10 GeV for both muons, AFP 2 mm from the beam)
- Optics calibration possible with sufficient statistics



Bremsstrahlung

- Comparing AFP position to ZDC energy
- \bullet Very large cross section \rightarrow no problem with statistics
- Large backgrounds, but should be manageable
- Can provide precise alignment and precise calibration

ALFA / vertical pots (A. Kupco)

- Elastic scattering: very strongly correlated kinematics: left and right sides, trajectory position and direction – very good for alignment
- Align vertical pots with elastic scattering
- Use overlapping acceptance region between horizontal and vertical pots to align the horizontal ones
- Either dedicated vertical pots or common run with ALFA (more difficult due to Q6 magnet between AFP and ALFA)

Contents

AFP Alignment

- R. Staszewski
- Optics stability
- Alignment Precision
- Alignment Methods
- Summary

D Optics stability

- Alignment Precision
- 3 Alignme
- 4 Summary

Summary

AFP Alignment

- R. Staszewski
- Optics stability
- Alignment Precision
- Alignment Methods
- Summary

- Poor alignment (200 µm) leads to:
 - systematic uncertainty on ξ reconstruction: below 10 %
 - systematic uncertainty on cross sections (via acceptance): 3 % (single tag), 4 % (double tag)
- Majority of measurements at low and medium luminosity does not need very precise alignment
- Present estimates for the alignment precision:
 - Hot spot method: 10 µm for absolute alignment (100K ev)
 - Kinematic peak method: 30 µm for relative alignment between stations (100K events)
 - Distribution shift: 25 µm for relative movement
 - Exclusive muons: 10 µm for 100 events
 - LVDT: 35 μm
 - **BPM**: 1 μm
 - BPM and LVDT calibration: 100 200 µm (possible improvement with quartz window)