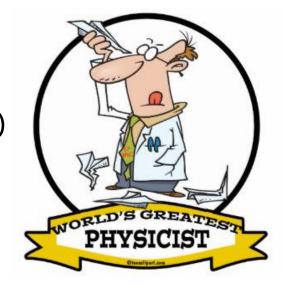
Searches for long-lived particles at the LHC

After a few year's of LHC running, both ATLAS & CMS have published several searches for long-lived, exotic particles.


• What motivates these searches ?

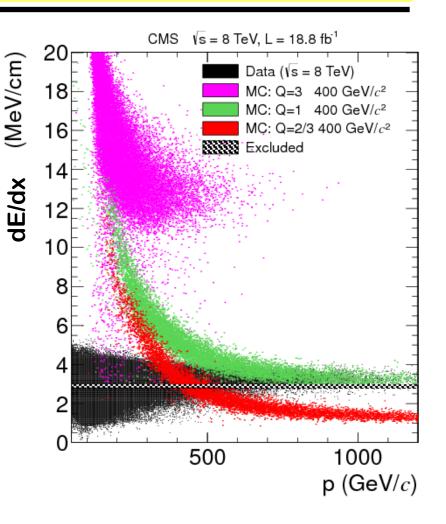
- I will summarize *some* of the results from each experiment.
- And ask how well are they exploring the phase space ? Where should we strive to make improvements ?

Motivation

- Many theories predict long-lived (LL) particles. e.g. In SUSY:
 - > GMSB: $\tilde{\chi}^0 \to \gamma \tilde{G} \text{ or } \tilde{\tau} \to \tau \tilde{G}$, where $\tilde{\chi}^0$ and $\tilde{\tau}$ are LL because \tilde{G} coupling is small.
 - > AMSB: $\tilde{\chi}^+ \rightarrow \tilde{\chi}^0 \pi^+$, via virtual \tilde{q} , where $\tilde{\chi}^+$ is LL because NLSP & very close in mass to $\tilde{\chi}^0$.
 - > Split SUSY: $\tilde{g} \rightarrow g \tilde{\chi}^0$, via virtual \tilde{q} , where \tilde{g} is LL because \tilde{q} heavy.
- Theoretical physicists are *brilliant* at inventing LL models ! ('Hidden Valley' ...)
- Lesson: Best to do searches that are not specific to just one model!

Motivation

 Dark matter exists!
 So if one exotic particle with infinite lifetime exists, perhaps others with shorter lifetimes do too?

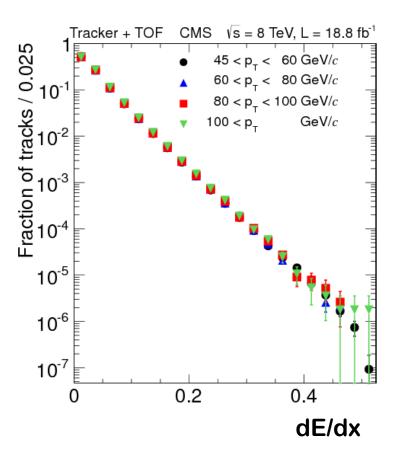

- The LHC is exploring a large, new energy regime, but no evidence for new physics has been. Why not ? Perhaps the new physics is being produced, but is hard to see!
 - LL particle searches require dedicated triggers & event reconstruction algorithms.
 Otherwise LL particles are missed!

Search for heavy stable charged particles (HSCP) CMS (CERN-PH-EP-2013-073)

The high mass of HSCP means they tend to have low velocity $\beta < c$, but high Pt. Their low β means:

- They are highly ionizing (dE/dx). Measure dE/dx using pulse height of silicon tracker hits.
- They arrive late (compared to relativistic particle) in outer detector.
 Measure arrival time & hence β using muon chambers (= drift tubes + ...).

 $\sigma(1/\beta) \sim 0.065$


Search for heavy stable charged particles (CMS) Background estimation

- The 3 key selection variables:
 - 1. dE/dx
 - 2. velocity (β)
 - 3. track Pt

are statistically uncorrelated for SM particles.

e.g. dE/dx has little dependence on Pt for relativistic particles.

 This means the amount of background passing cuts on any 2 (3) variables can be estimated from data.

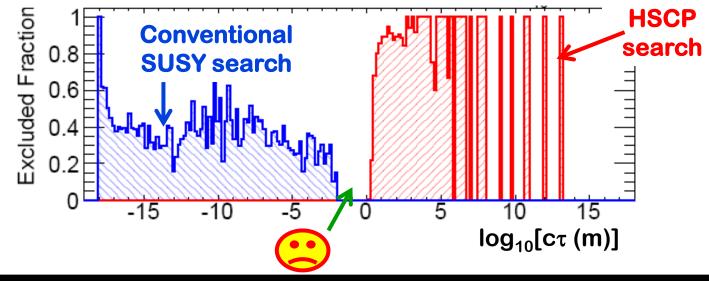
Search for heavy stable charged particles (CMS) Different search strategies for different particles!

- Search for long-lived τ̃, g̃, t̃.
 Coloured particles (g̃, t̃) hadronize to R-hadrons with SM q/g.
- R-hadrons flip charge as they pass through the CMS detector material. A charged R-hadron may be neutral when it reaches the outer detector!
- Unsure how often \tilde{g} forms neutral hadron with g. Could be 100%! If so, track would start neutral (invisible) but may become charged through interaction with detector.
- Therefore do searches using:
 - > "tracker + muon chambers" (for $\tilde{\tau}$)
 - "tracker only"

(for initially charged R-hadron: \tilde{t} , \tilde{g})

> "muon chambers only" (for initially neutral R-hadron: \tilde{g})

Search for heavy stable charged particles (CMS) Results


• 95% CL lower mass limits placed:

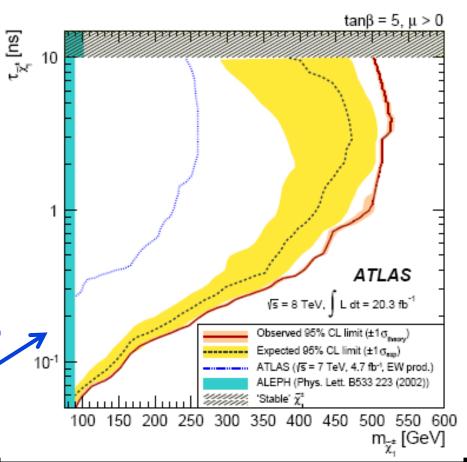
- Limits on \tilde{g} & \tilde{t} vary by ~100 GeV, depending on R-hadron assumptions.
- CMS also has limits on LL leptons of charge e/3 to 8e.
- ATLAS has a comparable search for LL $\tilde{\tau}$ (ATLAS-CONF-2013-058).

Search for HSCP (CMS-EXO-13-006) Towards model independent results ...

- Publish number of data candidates passing cuts & expected background.
- Publish HSCP efficiency vs. Pt, β & η of HSCP.
- If HSCP lifetime is small, multiply this by prob that it transverses CMS before decaying: exp[-M L(η) / c τ P].
- Can now estimate efficiency & limits for arbitrary HSCP model, if kinematics known at generator-level.
 - > E.g. for pMSSM (19 parameter MSSM), plot fraction of excluded parameter space vs. $\tilde{\chi}^+$ lifetime.

How to find short-lived HSCP ?

• Conventional SUSY searches cover $c\tau < 1 \text{ mm}$. And HSCP search only covers $c\tau > 1 \text{ m}$. There's a gap in the coverage!


• Idea: HSCP with 1 mm < $c\tau$ < 1 m will decay in the CMS/ATLAS Tracker.

- So search for:
 - > Charged tracks that disappear part through the Tracker (ATLAS)
 - Evidence of displaced tracks coming from a LL particle decay. (Can also detect neutral LL particles !). - CMS + ATLAS

Disappearing (HSCP) track search ATLAS (CERN-PH-EP-2013-155)

- In AMSB, $\tilde{\chi}^+ \to \tilde{\chi}^0 \pi^+$, where $\tilde{\chi}^+$ is LL and π^+ very soft, because $\tilde{\chi}^+$ and $\tilde{\chi}^0$ almost mass degenerate.
- Trigger using ISR jet + missing Et (from $\tilde{\chi}^0$), since can't trigger on π^+ .
- Offline: also require high Pt, isolated track, with no hits in outer layers of the Tracker.
- Fit track Pt spectrum to signal + background hypothesis,
- Limits for 15 mm < $c\tau$ < 3 m

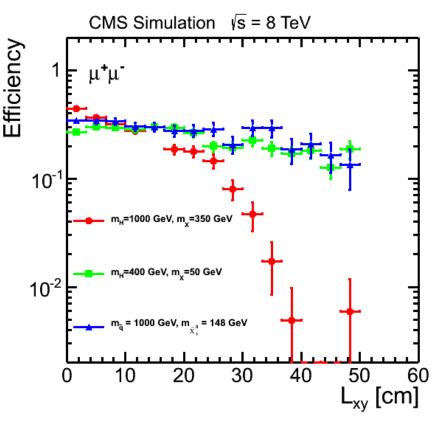
Search for long-lived particles decaying to displaced I⁺I⁻ (CMS-EXO-12-037)

- Goal -- search for charged/neutral LL particle decays to (l⁺,l⁻,anything).
- Trigger based on ECAL & Muon chamber info only, since reconstructing displaced Tracker tracks in trigger not possible.
- Search for e⁺e⁻ or $\mu^+\mu^-$ that form a displaced track-vertex in the CMS tracker.
- Considered 2 signal models:

```
Example of

Higgs \Rightarrow 2X \Rightarrow (e+e-)(\mu^+\mu^-)

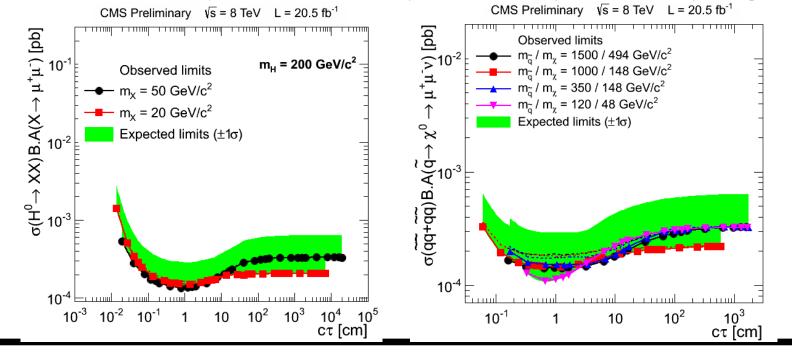
event, where X is LL particle


Also studied

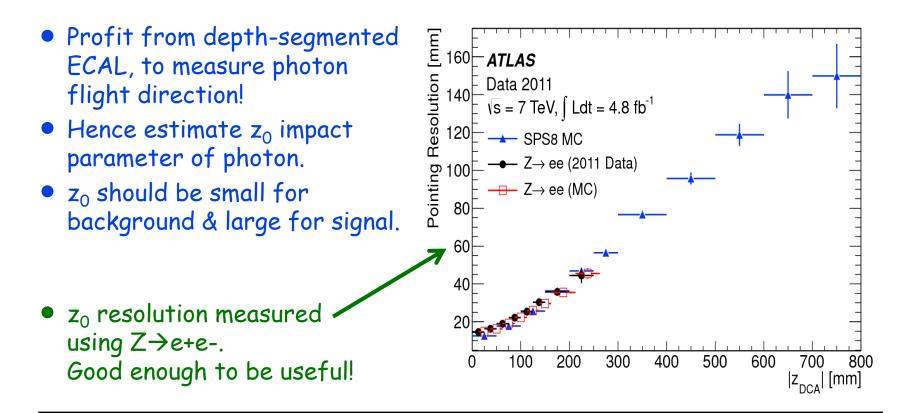
long-lived \tilde{\chi}^0 \rightarrow l^+ l^- v

(R-parity violating SUSY)
```

Search for long-lived particles decaying to displaced I⁺I⁻ (CMS) Efficiency

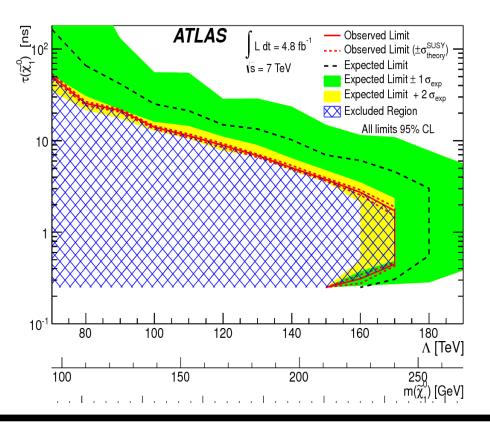

- Decent efficiency to reconstruct LL particles in both signal models up to 50 cm from beam-line. (Thanks to effort invested in displaced-track reconstruction).
- Tracking efficiency for displaced isolated leptons measured using cosmic rays.
- No candidates pass cuts in data.

Long-lived particles decaying to displaced I⁺I⁻ (CMS) → Model independent results


- Define acceptance region where efficiency "high":
 i.e. Lepton Pt > 26-40 GeV & |η| < 2 & L_{xy} < 50 cm.
- Non-trivial limits for 0.1 mm < $c\tau$ < 100 m
- Limits on "σ*BR*acceptance" approximately independent of model (& even lifetime)!

> i.e. Valid for any model where LL particle decays to (1+,1-,anything)!

Search for long-lived particles decaying to displaced photons ATLAS (CERN-PH-EP-2013-049)


- In GMSB SUSY: long-lived $\tilde{\chi}^0 \rightarrow \gamma \tilde{G}$.
- Expect 2 $\tilde{\chi}^0$ per event, so trigger requires 2 photons.
- Offline, also require missing Et from \tilde{G} .

Search for long-lived particles decaying to displaced photons (ATLAS)

- Fit to photon z_0 impact parameter distribution gives limits in plane of $\tilde{\chi}^0$ lifetime vs. mass, assuming SPS8 SUSY parameters.
- Together, CMS & ATLAS have limits for $c\tau$ < 30 m.

- N.B. These searches sensitive to any model giving displaced photons!
- So presenting limits in a more model-independent way would be welcome ...

Other displaced track searches

- Similar to CMS displaced dilepton search, but searches for displaced track vertices found in tracker with different final states.
 - > CMS-EXO-12-038: Higgs \rightarrow 2 LL particle \rightarrow 2 ($q\bar{q}$)
 - > ATLAS-CONF-2013-092: long-lived $\widetilde{\chi}^0 \rightarrow \mu q \overline{q}$
 - > ATLAS (CERN-PH-EP-2012-241): Higgs \rightarrow 2 LL particle \rightarrow 2($\mu^+\mu^-$ "v")
- One cute search (ATLAS CERN-PH-EP-2011-228) profits from the air-core muon chambers to search for LL particles decaying in the muon chambers to $b\overline{b}$.

(Sensitive to decay lengths of several metres, unlike the Tracker-based searches).

Conclusions

- Both ATLAS & CMS have published several searches for LL particles.
- Signature-based searches, with limits applicable to a wide range of models, are starting to appear.

- *Charged* LL particles can be explored over all lifetime ranges from essentially prompt decays to stable. However, if they decay within the detector, not all possible decay channels studied yet ...
- Neutra/LL particle decays can be sometimes be reconstructed if they occur within ATLAS/CMS volume.
 - > Decays outside this, may be found by "dark matter" searches.
 - Decays with ct < 1mm, may be found by conventional, promptly-decaying-particle searches.