

Measurements of Higgs Boson spin and CP at the LHC

Roko Pleština for the ATLAS and CMS collaborations

26th Rencontre de Blois – 18-23 May 2014

中国科学院高能物理研究所

Institute of High Energy Physics Chinese Academy of Sciences

In the next 15 minutes

If ATLAS and CMS can say about:
 higgs boson == The Higgs boson

- Through the 3 giants
 - $H \rightarrow ZZ \rightarrow 4l$
 - $H \rightarrow WW \rightarrow 2l2v$
 - $H \rightarrow \gamma \gamma$
- And their combination

Motivation

 July 2012: new resonance discovered by CMS and ATLAS collaborations

[Phys.Lett. B716 (2012); Phys.Lett. B716 (2012)]

- Couplings and signal strength compatible with the SM Higgs boson:
 - $\mu = 1.33 \pm 0.20$ (ATLAS)
 - $\mu = 0.80 \pm 0.14$ (CMS)

What are the new particle's quantum numbers $J^{\mathbb{N}}$?

- SM predicts J^{PC} = 0
 - Observation in diphoton implies C=1 and disfavors J=1 due to Landau-Yang
 - ZZ, WW channels can test spin-1 hypothesis for independent confirmation and mixtures
 - Observation in WW favors J=0 (biased selection)
 - Observation in ZZ, WW disfavor P=-1
- Next step is to test the 0⁺ hypothesis against alternative models

- For each channel, find observables
 - discriminate between the SM and the alternative hypotheses
- We test spin-parity → angles interesting
- Different channels → different kinematic properties

Angles

- for good discrimination looking at a single variable is usually not enough
- From simulations (and control regions), obtain the distributions for background, signal and alternative hypotheses events in the space of the discriminating variables → likelihood distributions for signals/models
- Pseudo-experiments to generate the distribution of the test statistics
- $q = -2 \log(L_{SM}/L_{JP})$ under the SM/alternative hypothesis
- Compare with results observed in the data $\mathbf{q}_{\mathrm{obs}}$ using \mathbf{CL}_{s}

Tested models

- Many models tested
- New models tests pipelined for summer conferences

	ATLAS					
\int_{P}	prod	channel				
0-	any	ZZ				
1^{-}	any	ZZ,WW				
1+	any	ZZ,WW				
2^{+}_{m}	gg	ZZ,WW, $\gamma\gamma$				
$ 2^{+}_{m} $	$q\bar{q}$	ZZ,WW, $\gamma\gamma$				
2^{+}_{m}	any	ZZ,WW, $\gamma\gamma$				

		CMS	
J^P	prod	channel	
0-	any	ZZ,WW	pseudoscalar
0_h^+	any	ZZ	scalar high dim op
1 1 -	$q\bar{q}$	ZZ	
1-	any	ZZ	
1+	$q\bar{q}$	ZZ	
1+	any	ZZ	
$\frac{1}{2} \frac{1}{m}$	gg	ZZ,WW, $\gamma\gamma$	grav, min. coupl.
2+	$q\bar{q}$	ZZ,WW, $\gamma\gamma$	grav, min. coupl.
2_{m}^{+}	any	ZZ,WW, $\gamma\gamma$	grav, min. coupl.
2^{+}_{b}	gg	ZZ	RS grav, SM in bulk
2 ⁺ _b 2 ⁺ _h	gg	ZZ	tensor high dim op
2^{-}_{h}	gg	ZZ	pseudo-tensor

$H \rightarrow ZZ \rightarrow 4$ leptons

$H \rightarrow ZZ \rightarrow 4l$ in a nutshell

- Narow resonance → events in m₄₁ window:
 - [115 130] GeV ATLAS
 - [106 141] GeV CMS
- 5 angles and 2 masses fully describe the
- H→ZZ→ 4l decay
- Sensitive to both, spin and parity
- Golden channel to probe the 0⁻ hypothesis

$H \rightarrow ZZ \rightarrow 4l$ @ATLAS

ATLAS

 \sqrt{s} =7 TeV | Ldt = 4.6 fb⁻¹

 \sqrt{s} =8 TeV $\int Ldt = 20.7 \text{ fb}^{-1}$

 $H \rightarrow ZZ^* \rightarrow 4I$

Background ZZ*

15

10

Background Z+jets, tt

- BDT approach using the 5+2 kinematic variables
- Split in 4 final states (4e, 4μ, 2e2μ, 2μ2e) to increase sensitivity
- 2 different mass regions:
 - high S/B in [121-127]
 - low S/B in [115-12] and [127-130]
- 5 different qq fractions tested for spin-2

1							···· -1	-0.5	0	0.5	1''''
$f_{qar{q}}$	Spin-2 assumed	Spin-0 assumed	obs. $p_0(J^P = 0^+)$	obs. $p_0(J^P = 2^+)$	CL.	$I^{P} = 2^{+}$				BDT (output
250 00000	exp. $p_0(J^P = 0^+)$	exp. $p_0(J^P = 2^+)$	0001 P0(0 - 0)	003. p ₀ (0 = 2							•
100%	0.102	0.082	0.962	0.001	0	.026					
75%	0.117	0.099	0.923	0.003		.039	tested	J^P for	tested 0	+ for	
50%	0.129	0.113	0.943	0.002	0	0.035				-	
25%	0.125	0.107	0.944	0.002	0	0.036 an assumed 0^+		an assum	$\operatorname{ed} J^P$	CL_S	
0%	0.099	0.092	0.532	0.079	0	.169		-11			
100							expected	observed	observ	ea	
J:	= 2 f _{qq} C	L _s			0-	p_0	0.0037	0.015	0.31	1	0.022
					1+	p_0	0.0016	0.001	0.55	5	0.002
			J = 1	,2 CL __ [*]	1-	p_0	0.0038	0.051	0.15	5	0.060

 Matrix Element Likelihood approach compresses kinematic information into 1D discrimants

$$D_{ ext{bkg}} = \left[1 + rac{P_{ ext{bkg}}^{ ext{kin}}(m_1, m_2, \Omega | m_{4I}) imes P_{ ext{bkg}}^{ ext{mass}}(m_{4I})}{P_{0+}^{ ext{kin}}(m_1, m_2, \Omega | m_{4I}) imes P_{ ext{sig}}^{ ext{mass}}(m_{4I})}
ight]^{-1} \ D_{JP} = \left[1 + rac{P_{JP}^{ ext{kin}}(m_1, m_2, \Omega | m_{4I})}{P_{0+}^{ ext{kin}}(m_1, m_2, \Omega | m_{4I})}
ight]^{-1}$$

- Using 2D templates ($D_{_{JP}}$, $D_{_{bkq}}$) to build likelihoods for $0^{\scriptscriptstyle \dagger}$ and $J^{\scriptscriptstyle P}$
- 9 models were tested and excluded + 3 prod. indep. models (1⁻, 1⁺, 2⁺)

$H \rightarrow ZZ \rightarrow 4l$ @CMS

• 9 models were tested and excluded + 3 prod. indep. models (1⁻, 1⁺, 2⁺)

J^P model	J^P production	Expected $(\mu = 1)$	Obs. 0 ⁺	Obs. J^P	CL_s
0-	any	2.4σ (2.7 σ)	-1.0σ	$+3.8\sigma$	0.05%
$0_{\rm h}^{+}$	any	1.7σ (1.9σ)	-0.3σ	$+2.1\sigma$	4.5%
1"	$q\bar{q} \to X$	2.7σ (2.7σ)	-1.4σ	$+4.7\sigma$	0.002%
1-	any	2.5σ (2.6σ)	-1.8σ	$+4.9\sigma$	0.001%
1+	$q\bar{q} \to X$	2.1σ (2.3σ)	-1.5σ	$+4.1\sigma$	0.02%
1+	any	2.0σ (2.1σ)	-2.1σ	$+4.8\sigma$	0.004%
$2_{\rm m}^+$	$gg \to X$	1.9σ (1.8σ)	-1.1σ	$+3.0\sigma$	0.9%
2 ⁺ _m	$q\bar{q} \to X$	1.7σ (1.7σ)	-1.7σ	$+3.8\sigma$	0.2%
2 ⁺ _m	any	1.5σ (1.5σ)	-1.6σ	$+3.4\sigma$	0.7%
2 ⁺	$gg \to X$	1.6σ (1.8σ)	-1.4σ	$+3.4\sigma$	0.5%
$\begin{array}{c} 2_b^+ \\ 2_h^+ \end{array}$	$gg \to X$	3.8σ (4.0σ)	$+1.8\sigma$	$+2.0\sigma$	2.3%
$2^{\frac{n}{h}}$	$gg \to X$	$4.2\sigma~(4.5\sigma)$	$+1.0\sigma$	$+3.2\sigma$	0.09%

H → ZZ → 4l @CMS – parameter f_{a3}

Most general spin-0 boson decay amplitude:

$$A(H \rightarrow ZZ) = v^{-1} \epsilon_1^* \epsilon_2^* \left(a_1 g_{\mu\nu} m_Z^2 + a_2 q_{\mu} q_{\nu} + a_3 \epsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta} \right)$$

$$|a_1|^2 \sigma_3 |a_2|^2 \sigma_2 |a_3|^2 \sigma_3$$

$$f_{a3} = \frac{|a_3|^2 \sigma_3}{|a_1|^2 \sigma_1 + |a_2|^2 \sigma_2 + |a_3|^2 \sigma_3}$$

- CP violation in case $0 < f_{a3} < 1$
- Interference is negligible
 - neglect $|\mathbf{a}_2|^2 \sigma_2$
- Use shape of D_{0-} as it depends on f_{a3}
- Set a limit on CP violating contributions to HZZ coupling

 $f_{33} < 0.51$ at 95%

$H \rightarrow WW \rightarrow 2l2v$

- neutrinos in the final states → low mass resolution
- Low signal, high background → challenging selection
- Can discriminate between spin-0 and spin-2
- key variables: $\Delta \Phi_{\parallel}$, m_{\parallel} , p_{\perp}^{\parallel} , m_{\uparrow}

Most of the sensitivity comes from H → WW → ev µv

$H \rightarrow WW \rightarrow 2l2v$ @ATLAS

- softer selection wrt nominal:
 - MET > 20 GeV,
 - 0 jets,
 - $p_T^{ll} > 20 \text{ GeV}$,
 - $m_{ll} < 80 \text{ GeV}, \Delta \Phi_{ll} < 2.8$
- The four discriminating variables are input to BDT

BDT

- 2D fit of the J=0 and J=2 BDT discriminants
- Same approach used for J=1
 - •1⁺ excluded at 92% CL,
 - •1⁻ excluded at 98.3% CL

- Different qq fractions tested for spin-2
- Highest rejection for the 100% qq case
- Good agreement between spin-0 and data,

100% qq rejected at > 99% CL

- Used to test 0⁺ against 0⁻ or minimal coupling 2⁺_{min} (graviton-like)
- Events in 0 or 1 jet categories
- Similar to ZZ analysis, 2-dimensional templates based on mll and m_T distributions
- Different qq fractions tested

- agreement between 0⁺ and data,
- 100% qq rejected at 99% CL

J^P model	J^P production	Expected ($\sigma/\sigma_{\rm SM}=1$)	obs. 0 ⁺	obs. J^P	CL_s
2_{\min}^{+}	$f_{q\overline{q}}=0\%$	1.8σ (2.6 σ)	$+0.6\sigma$	$+1.2\sigma$	16.3%
2_{\min}^{+}	$f_{q\bar{q}} = 50\%$	2.3σ (3.2 σ)	$+0.2\sigma$	$+2.1\sigma$	3.3%
2_{\min}^{+}	$f_{q\bar{q}} = 100\%$	2.9σ (3.9 σ)	-0.2σ	$+3.1\sigma$	0.2%
0-	any	$0.8\sigma (1.1\sigma)$	-0.5σ	$+1.2\sigma$	34.7%

$$H \rightarrow \gamma \gamma$$

$H \rightarrow \gamma \gamma$ in a nutshell

- Decay of spin-1 particles to $\gamma\gamma$ forbidden by Landau-Yang.
- Observation excludes pure spin-1 states → test spin-2 models
- Most powerful discriminant : polar angle θ^*
- $\cos \theta^*$ uniform in spin-0, depends on the qq fraction for spin-2
- Discrimination power degrades increasing the qq fraction
 - Most sensitive to pure gg production mechanism

$H \rightarrow \gamma \gamma$ @CMS

- Only 8 TeV samples finalized at the moment
- Dataset divided in 5 bins of $\cos \theta^*$ and 4 categories of purity (R9_{min} and $|\eta|_{max}$)
- Total of 20 fits of m_{vv}
- Comparison of 0^- vs gg \rightarrow 2^+_m and qq \rightarrow 2^+_m
- Results not conclusive yet, updates arriving

$H \rightarrow \gamma \gamma$ @ATLAS

- Good rejection power between 0⁺ and 2⁺ when 100% gg
- Less powerful in the qq case
- Cuts optimized to minimize the correlation between $m_{_{yy}}$ and $cos\;\theta^*$
- Alternative: simultaneous fits of myy in bins of $\cos \theta^*$ gives compatible results
- 0% qq spin-2 excluded at 99.3% CL

, 	$f_{qar{q}}$	Spin-2 assumed exp. $p_0(J^P = 0^+)$	Spin-0 assumed exp. $p_0(J^P = 2^+)$	obs. $p_0(J^P = 0^+)$	obs. $p_0(J^P = 2^+)$	$CL_{s}(J^{p}=2^{+})$
	100%	0.148	0.135	0.798	0.025	0.124
	75%	0.319	0.305	0.902	0.033	0.337
	50%	0.198	0.187	0.708	0.076	0.260
	25%	0.052	0.039	0.609	0.021	0.054
	0%	0.012	0.005	0.588	0.003	0.007

Combination from ATLAS

- 0⁻ hypothesis excluded at 97.8% CL in the ZZ channel
- 1⁺ hypothesis excluded at 99.97% CL by the combined ZZ+WW analysis
- 1- hypothesis excluded at 99.7% CL by the combined ZZ+WW analysis
- Tested 2^+ excluded at 99.9% CL by the combined ZZ+WW+ $\gamma\gamma$ analysis

CMS results

- Negative parity excluded at 99.96%
 CL in ZZ channel
- Spin-1 excluded at > 99.9% in the ZZ channel
- 2⁺_m model excluded at 99.4% by the combined WW+ZZ analysis
- Other spin-2 (2+, 2+, 2-) models excluded at more 97% CL in ZZ
- Mixture studies are the next big goal for summer conferences
 - CMS already set a limit on CP-odd contribution fa3 < 0.51 at 95%

Conclusions

- Both CMS and ATLAS results show SM (0+) state highly favored against alternative pure J^P states
- The two experiments show good agreement and consistent and complementary results
- Best knowledge from both experiments allows to exclude all tested hypotheses of J^P = 0⁻, J = 1 and J = 2 states with CL > 99.9%

Next

- put more stringent constraints on the allowed mixture
- But a limit on the fraction of CP-odd contributions to the cross-section fa3 < 0.51 has already been set by CMS
- In the future, extend the analyses to VBF, VH, ttH, $H \rightarrow \tau \tau$, ...
- Combination between the experiments

References

ATLAS results:

- $H \rightarrow ZZ$
 - ATLAS-CONF-2013-013
- H → WW
 - ATLAS-CONF-2013-031
 - Phys. Lett. B 08, 026
- H → γγ
 - ATLAS-CONF-2013-029
- Combination
 - ATLAS-CONF-2013-040
 - arXiv:1307.1432

CMS results:

- H → ZZ
 - Phys. Rev. D 89, 092007
- H → WW
 - CMS-PAS-HIG-13-023
 - JHEP 01 (2014) 096
- H → γγ
 - CMS-PAS-HIG-13-016
- Combination
 - CMS-PAS-HIG-13-005

TABLE II. List of observables and kinematic discriminants used for signal versus background separation and studies of the properties of the observed resonance. The alternative hypotheses for J=0 are independent of the production mechanism without the need of integrating out the production angles $\cos \theta^*$ and Φ_1 .

Discriminant	Note
	Observables used for the signal-strength measurement
$m_{4\ell}$	Four-lepton invariant mass, main background discrimination. Discriminate SM Higgs boson against ZZ background.
$egin{array}{l} m_{4\ell} & & & \\ \mathscr{D}_{ m bkg}^{ m kin} & & & \\ \mathscr{D}_{ m jet} & & & & \\ P_{ m T}^{4\ell} & & & & \end{array}$	Linear discriminant, uses jet information to identify VBF topology.
$p_{\mathrm{T}}^{4\ell}$	$p_{\rm T}$ of the 4ℓ system, discriminates between production mechanisms.
	Observables used in the spin-parity hypothesis testing
D _{bkg} D₁-	Discriminates SM Higgs boson against ZZ background, includes $m_{4\ell}$. Exotic vector (1 ⁻), $q\bar{q}$ annihilation.
$\mathcal{D}_{1^{+}}$	Exotic pseudovector (1^+) , $q\bar{q}$ annihilation.
$\mathcal{D}^{gg}_{2^+_{m}}$	Graviton-like with minimal couplings (2 ⁺ _m), gluon fusion.
$\mathscr{D}_{2^{+}}^{qar{q}}$	Graviton-like with minimal couplings $(2_{\rm m}^+)$, $q\bar{q}$ annihilation.
D 99 2+	Graviton-like with SM in the bulk (2_b^+) , gluon fusion.
$\mathscr{D}_{2^{+}}^{gg}$	Tensor with higher-dimension operators (2_h^+) , gluon fusion.
$\mathcal{D}_{1^{+}}$ $\mathcal{D}_{2_{\mathrm{m}}^{+}}^{gg}$ $\mathcal{D}_{2_{\mathrm{m}}^{+}}^{g\bar{q}}$ $\mathcal{D}_{2_{\mathrm{m}}^{+}}^{gg}$ $\mathcal{D}_{2_{\mathrm{h}}^{+}}^{gg}$ $\mathcal{D}_{2_{\mathrm{h}}^{+}}^{gg}$ $\mathcal{D}_{2_{\mathrm{h}}^{-}}^{gg}$	Pseudotensor with higher-dimension operators (2h), gluon fusion.
	Production-independent observables used in the spin-parity hypothesis testing
D0-	Pseudoscalar (0 ⁻), discriminates against SM Higgs boson.
\mathcal{D}_{0^+}	Non-SM scalar with higher-dimension operators (0_h^+) .
$\mathcal{D}_{0_h^+}$ $\mathcal{D}_{0_h^+}^{ ext{dec}}$ $\mathcal{D}_{1^-}^{ ext{dec}}$ $\mathcal{D}_{1^+}^{ ext{dec}}$ $\mathcal{D}_{2_h^+}^{ ext{dec}}$	Discriminates against ZZ background, includes $m_{4\ell}$, excludes $\cos \theta^*$, Φ_1 Exotic vector (1 ⁻), decay-only information.
Date:	Exotic pseudovector (1 ⁺), decay-only information.
Daec 2 ⁺ _m	Graviton-like with minimal couplings (2 ⁺ _m), decay-only information.