
Operational Experience with the Diamond Magnet Power Converters and Pulsed Power Supplies

Head of Power Supplies Group

Operational Experience with the Diamond Magnet Power Converters and Pulsed Power Supplies

- Design features to maximise power converter availability
- Power converter fault statistics
- Conclusions

Diamond Power Converter Parameters

Туре	Number	Current (A)	Voltage (V)	Bandwidth (Hz)
SR Dipole	1	1500	530	DC
Booster Dipole	1	1000	2000	5
Booster Quadrupole	2	200	421	5
Booster Sextupole	2	20	60	5
Medium Power Supplies	437	350/200/100	41/28/17	DC
Slow Corrector Type	544	5	20	50
LTB Quads.	10	20	55	1000*
Pulsed Power Supplies	10	85-15,000	100-23,000	Pulse

* Required for Fast Correctors, which are not fitted.

Diamond Power Converter Design Features to Maximise Availability

- Component Standardisation
- Digital Controller of proven design
- Plug-in modularity to minimise repair time
- Redundancy
- Minimised component count
- Component de-rating and stress analysis
- Highly Accelerated Stress Screening (HASS)
- MTBF Calculations

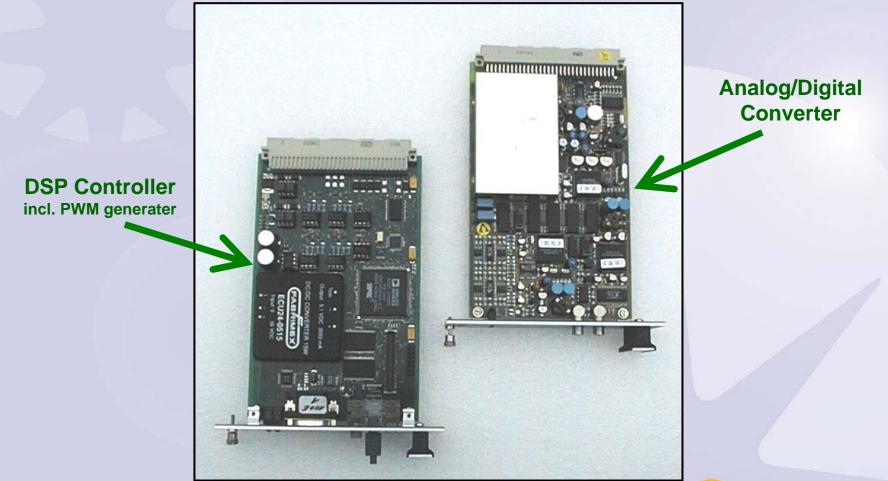
Component Standardisation

- 1,250 Controller and ADC cards common to all PC's and Pulse Power supplies
- 2,500 Power modules for all medium PC's (two types).
- 544 Inverter and current transducer modules for slow correctors
- 300 PULS 24 V, 20A/10A DC supplies for corrector PC's and control power.

These eight building blocks represent the majority of the components in the power converters.

PSI Digital Controller and ADC Cards

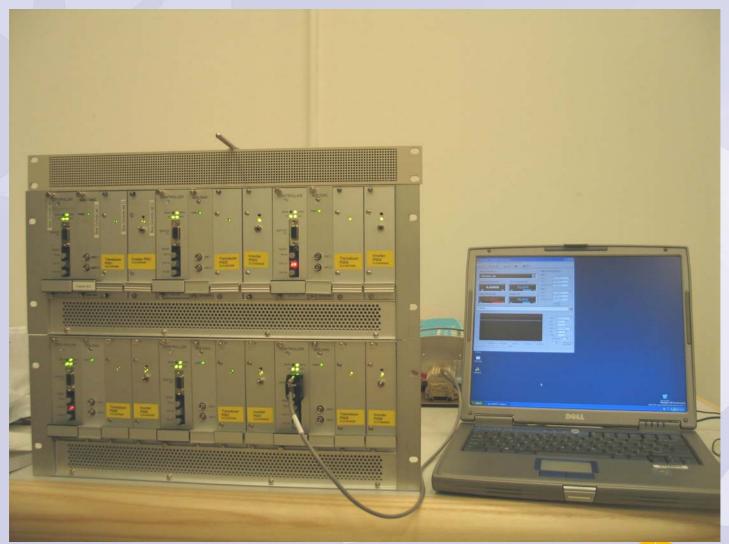
Advantages


- Proven design, working on an accelerator.
- Flexibility easy to change parameters for different magnets. Change code for different types of power supply.
- Single type of interface to control system, which means easy commissioning, one set of interface software, one set of panels for operators.

Disadvantages

- Responsibility for performance is not clear when free issued to a power supply manufacturer.
- Modification of someone else's software.

PSI Digital Controller and ADC Cards



Plug-in Modularity

- Medium PC's built with:-
 - 'Hot swappable' plug-in power modules
 - Plug-in Controller and ADC cards
 - Plug-in fan trays
- Corrector power supplies built with plug-in modules:-
 - Controller card
 - ADC card
 - Current transducer
 - Inverter module
- Large PC
 - Power semi-conductors in open frame plug-in modules
 - Plug-in control cards

Six Slow Corrector PC's Under Test

SR Dipole PC

Redundancy

Corrector PC's

- Share three parallel connected 24V supplies to feed the inverters, two of which are sufficient to provide full power.
- Share 24V control power using three supplies fed from independent mains feeds, whereas only two are necessary.
- Three fans are provide per sub-rack for cooling, whereas only two are necessary.

Medium and Large PC's

- Have redundant 24V control power supplies.
- Have redundant power modules.

Factory Tests on Linac Medium PC

Booster Dipole Power Converter Structure

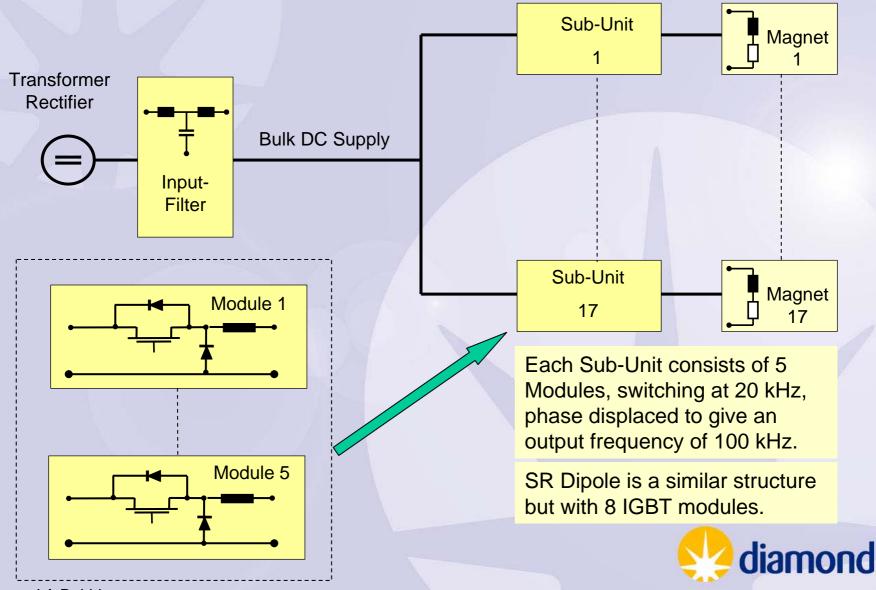
Booster Quadrupole PC's

Reduced Component Count

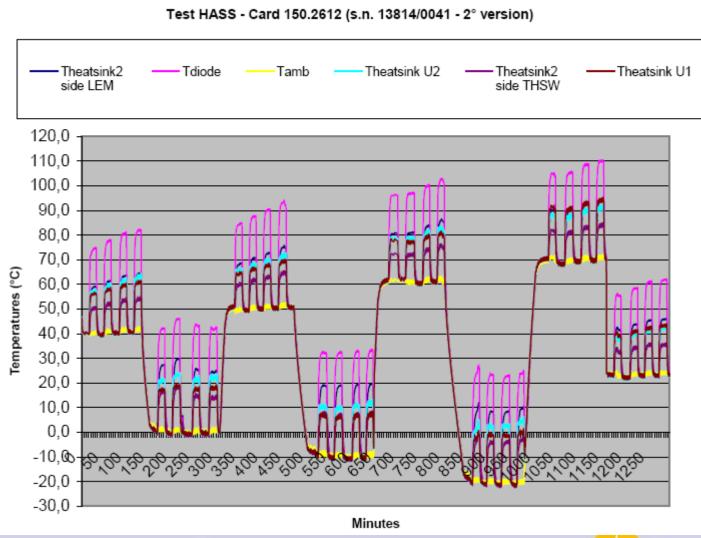
All Power Converters

• Local controls are on a laptop that plugs into the controller card.

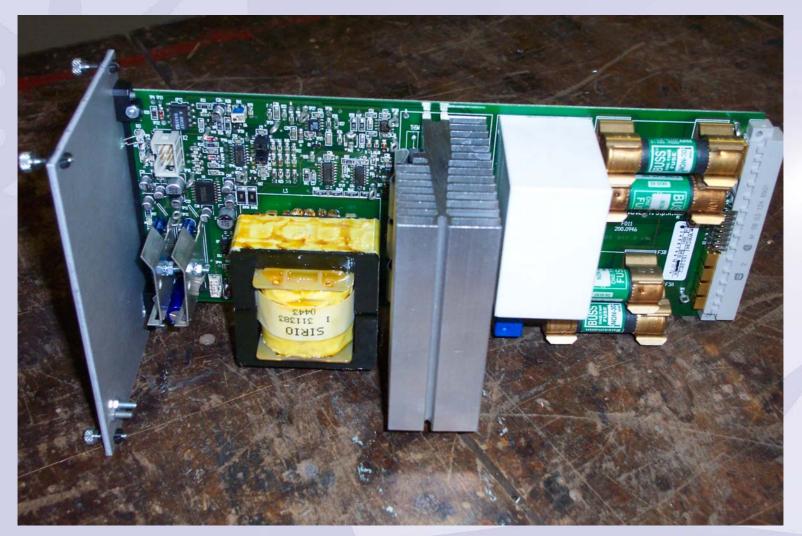
Medium PC's


• Up to 17 supplies have a common DC bus from a common transformer rectifier, reducing the number of transformer rectifiers from 437 to 26.

Corrector power supplies


• Up to 18 share three 24V,20A power supplies for the inverters and three 24V,10A power supplies for controls.

Medium Power Converter Structure



Power Module Highly Accelerated Stress Screening (HASS)

40 A Power Module

MTBF Calculation

Medium power supply power modules Using MIL-STD 217 F Notice 2

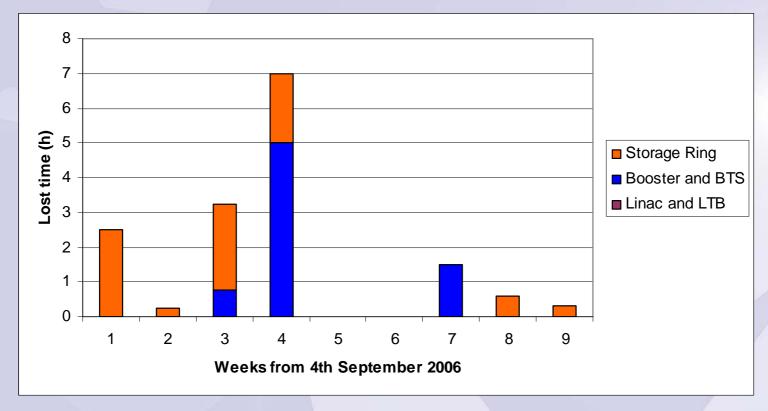
- Calculated Ground Benign failure rate 700,000 hours
- Actual failure rate under operating conditions 4.5 million hours

Difference attributable to power supply operation below rated level.

Component De-Rating

- Pulse Power Supplies power semiconductors voltage rating 3 times operating level due to the radiation environment.
- Generally power semiconductor voltage rating 2-2.4 times operating level.
- Power semiconductor junction temperature below 110°C.
- Electrolytic capacitors avoided where possible and where used ripple current de-rated for a 30 year lifetime.
- De-rating of control electronic components was also specified.

Two Booster Dipole Modules

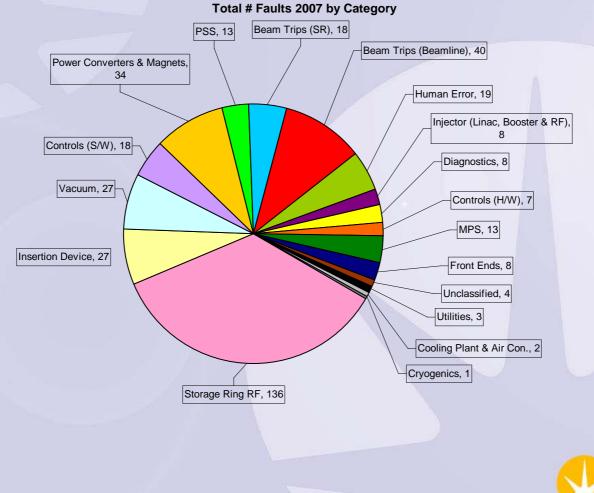


Diamond Power Converter Fault Statistics

- During Storage Ring Commissioning
- During 1st year of operation (2007)
- During first four months of 2008

Down Time Attributable to Power Converter and Pulsed Power Supplies During Storage Ring Commissioning

Average lost time over 9 weeks – 1.5%



Power Converter and Pulsed Power Supply Faults During 9 Weeks of Storage Ring Commissioning.

Number o Faults	of Power Supply	Comment	Down Time (Hrs)
1	SR Dipole	Parameter set incorrectly	2
6	Medium	Power Module interlock design fault, causing fault on power up – software change required.	2
7	Correctors	Inverter failed – Feedback changed reference too fast.	3.2
1	Medium	ADC failed	0.5
1	Medium	DSP failed	1
16	Total		8.7

Categorisation of Faults Causing Beam Loss During User Mode Operation in 2007

diamond

Power Converter and Pulsed Power Supply Faults in User Time: 2007 Runs 1to 10

Number of Faults	Туре	Comment	Down Time (Hrs)
			. ,
5	Misallocated	Trip by external signal, not a fault or Controls fault.	2.4
7	Pulsed Power Supplies	More operating errors than faults.	0.33
6	Intermittent	Suspected poor solder joints. Interlock channels disabled due to high redundancy.	2.63
5	Auxiliary Supplies	PULS 24V PSU batch fault.	6.37
1	DSP/ADC	ADC card fault.	0.57
2	Set Up	Parameter error.	1.92
1	Wiring	Loose connection.	2.75
7	Unrepeatable, Unexplained	Random resettable trips.	2.33
34	Total		19.3

0.62% of User Time Lost to Power Converter Faults (92% overall availability)

Power Converter and Pulsed Power Supply Faults in User Time: 2008 Runs 1to 3

Number of Faults	Туре	Comment	Down Time (Hrs)
2	Pulsed Power Supplies	Incorrect start up – controls/operator problem	0.44
1	ADC	ADC card voltage reading became unstable – reset.	0.35
2	DSP	Intermittent fault traced to a dry joint.	1.32
2	Pulsed Power Supplies	Booster Extraction Kicker - intermittent fault	0.27
1	Pulsed Power Supplies	SR Injection Kicker misfired	0.15
8	Total		2.53

Conclusions

- The Diamond power converters were commissioned with relatively little trouble. OCEM, who built the medium and large power converters, have never visited Diamond.
- To date, the power converters are a minor contributor to lost operating time on the machine.
- The trend in availability is improving as repeated faults are addressed and infant mortality decreases.
- The design features built into the power supplies for high availability have been worthwhile, in particular:-
 - Redundancy reduces the number of faults requiring an immediate intervention.
 - Plug-in modularity and operator training to replace modules reduces repair time. It also gives the Power Supplies Team a better nights sleep, with few call-outs!

