Introduction to accelerators

Simone Gilardoni CERN-BE/ABP

Simone.Gilardoni@cern.ch

The agenda...

2000 m 3000 km

Where we are going to go

Medical imagery

A CT (computerized tomography) scanner, or CAT (computerized axial tomography).
x-ray machine plus detector, both rotating around the patient

Kind of low energy particle physics fix target experiment
Image reconstruction similar to what we do for beam property diagnosis

Medical imagery

A CT (computerized tomography) scanner, or CAT (computerized axial tomography).
x-ray machine plus detector, both rotating around the patient

Kind of low energy particle physics fix target experiment
Image reconstruction similar to what we do for beam property diagnosis

Accelerators for cancer therapy

Accelerators for cancer therapy

CNAO = Centio Narionale alf Alatroterapial at Pavjas

National Centre for Oncological Hadrontherapy, CNAO, Pavia, Italy

National Centre for Oncological Hadrontherapy, CNAO, Pavia, Italy

Ion sources \quad LEBT components

CERN accelerator complex overview

CERN accelerator complex overview

It may perhaps seem odd that apparatus as big and as complex as our gigantic proton synchrotron is needed for the investigation of the smallest objects we know about. However, just as the wave features of light propagation make huge telescopes necessary for the measurement of small angles between rays from distant stars, so the very character of the laws governing the properties of the many new elementary particles which have been discovered in recent years, and especially their transmutations in violent collisions, can only be studied by using atomic particles accelerated to immense energies. Actually we are here confronted with most challenging problems at the border of physical knowledge, the exploration of which promises to give us a deeper understanding of the laws responsible for the very existence and stability of matter.
All the ingredients are there: we need high energy particles produced by large accelerators to study the matter constituents and their interactions laws. This also true for the LHC.

Small detail... Bohr was not completely right, the "new" elementary particles are not elementary but mesons, namely formed by quarks

What's the future?

Interlude: a brief recall of energy scales

- WARNING: for purists or non-experts: Energy, Masses and Momentum have different units, which turn to be the same since c (speed of light) is considered equal to one.
- Energy[GeV], Momentum [GeV/c], Masses [GeV/c²] (Remember golden rule, $\mathrm{E}=\mathrm{mc}^{2}$ has to be true also for units...)
- Just an as a rule of thumb: $0.5 \mathrm{II} \mathrm{MeV/c}^{2}$ (electron mass) corresponds to about $9.109 \mathrm{I} 0^{-31} \mathrm{~kg}$

An Example about energy scales: my cellular phone battery.
Voltage: 3.7 V
Height: 4.5 cm
proton mass $\sim \mathrm{I} \mathrm{GeV}$
To accelerate an electron to an energy equivalent to a proton mass:
I GeV/3.7 eV = 270270270 batteries
270270270 batteries * 0.045 m ~ 12000000 m

12000000 m ~THE EARTH DIAMETER

Obviously one has to find a smarter way to accelerate particles to high energies instead of piling up cellular phone batteries

Van De Graaf electrostatic generator (I928)

 A rotating belt charges a top terminal up to themaximum voltage before sparking.

Maximum accelerating Voltage: IO MV
Typical speed: $20 \mathrm{~m} / \mathrm{s}$ Hight: 0.5 m

Tandem

Application of Louvre Tandem: composition of scribe eyes

Discovering forgeries of modern art by the I4C Bomb Peak
Eur. Phys. J. Plus (2014) 129: 6
DOI 10.1140/epjp/i2014-14006-6

Contraste de formes, Fernard Leger (?) Peggy Guggenheim Collection, Venice.

Accelerator Mass Spectrometry (AMS) to measure rare isotopes abundance with 3MV Tandetron accelerator of INFN-LABEC in Florence.

particle accelerator

... by the way, one can also date French wine with isotopes

Activity of ${ }^{137}$ Cs in Bordeaux wine

Figure 1. Cesinun activity in the Bordeasx wine as a function of the millésime.

Matter constituents and interaction laws, the actors of our play

We need enough energy to produce directly the different particles, at least their mass
We need enough intensity (i.e. particle interactions) to produce enough particles

History/Energy line vs discovery

Obs: you can notice different particle species used in the different colliders electron-positrons and hadron colliders (either $p-\bar{p}$ as Tevratron, $p-p$ as LHC)

Why particle accelerators ?

- Why accelerators?: need to produce under controlled conditions HIGH INTENSITY, at a CHOSEN ENERGY particle beams of GIVEN PARTICLE SPECIES to do an EXPERIMENT
- An experiment consists of studying the results of colliding particles either onto a fixed target or with another particle beam.

The cosmos accelerates already particles more than the TeV While I am speaking about 6610^{9} particles/cm²/s are traversing your body, about 10^{5} LHC-equivalent experiment done by cosmic rays With a space distribution too dispersed for today's HEP physics!

Why particle accelerators ?

- Why accelerators?: need to produce under controlled conditions HIGH INTENSITY, at a CHOSEN ENERGY particle beams of GIVEN PARTICLE SPECIES to do an EXPERIMENT
- An experiment consists of studying the results of colliding particles either onto a fixed target or with another particle beam.

The cosmos accelerates already particles more than the TeV While I am speaking about 6610^{9} particles/cm²/s are traversing your body, about 10^{5} LHC-equivalent experiment done by cosmic rays With a space distribution too dispersed for today's HEP physics!

What's the future?

Building Blocks of an accelerator

I) A particle source
3) A series of guiding and storage devices

2) An accelerating system

Everything under vacuum

How to get protons: duoplasmatron source

Protons are produced by the ionization of H_{2} plasma enhanced by an electron beam

H_{2} inlet

Electron cathode
Plasma chamber

Proton exiting from the about $1 \mathrm{~mm}^{2}$ hole have a speed of $1.4 \% c, \quad v \approx 4000 \mathrm{~km} / \mathrm{s}$

The SPACE SHUTTLE goes only up to $8 \mathrm{~km} / \mathrm{s}$

Back of the source

http://cern60.web.cern.ch/fr/exhibitions/duoplasmatron

http://cern60.web.cern.ch/fr/exhibitions/duoplasmatron

Cern Control Center: first LHC day

How to get antiprotons

Starting from high energy P and with a very low efficiency

$$
p+p \rightarrow p+p+p+\bar{p}
$$

$10^{13} \mathrm{p}$ to have about 10^{7} antiprotons

How an accelerator works ?

Accelerator

Electric field accelerates particles (ms - hours)

Goal: keep enough CHARGED particles confined in a well defined volume to accelerate them for a sufficiently long time

How ? Lorentz Force!
$\overline{F(t)}=q(\overline{E(t)}+\overline{v(t)} \otimes \overline{B(t)})$
An accelerator is formed by a sequence (called lattice) of:
a) Magnets \rightarrow Magnetic Field
b) Accelerating Cavity \rightarrow Electric Field
(speed) behave differently
Magnetic field confines particles
on a given trajectory

$$
\overline{F(t)}=\underbrace{q(\overline{E(t)}}_{\mathrm{F}_{\mathrm{E}}}+\overline{v(t)} \underbrace{\underbrace{B}(t)}_{\mathrm{F}_{\mathrm{B}}})
$$

Linear Accelerator

Circular Accelerator

Cyclotron

Particle source located in a vertical B field near the center of the ring

Electrical (E) RF field generated between two gaps with a fixed frequency

Particles spiral while accelerated by E field every time they go through the gap

$$
E p=\frac{1}{2} \frac{e^{2}}{m_{0}} B^{2} R_{\max }^{2}
$$

Max energy for protons: 20 MeV

Main limitations:

I) not working for relativistic particles, either high energy or electrons
2) B field at large radius not vertical

Invented by Lawrence, got the Noble prize in 1939

The first cyclotron and the Berkeley one

Synchrocyclotron

- Synchrocyclotrons have a constant magnetic field with geometry similar to the uniform-field cyclotron. The main difference is that the $r f$ frequency is varied to maintain particle synchronization into the relativistic regime.

Synchrotron (1952, 3 GeV, BNL)

New concept of circular accelerator. The magnetic field of the bending magnet varies with time. As particles accelerate, the B field is increased proportionally.
The frequency of the accelerating cavity, used to accelerate the particles, has also to change.
$B=B(t)$ magnetic field from the bending magnets
$\mathrm{p}=\mathrm{p}(\mathrm{t})$ particle momentum varies by the RF cavity
e electric charge
p constant radius of curvature to $\max \sim I$ T for room temperature conductors

Particle rigidity: $B \rho=\frac{p}{e}$

CERN accelerator complex overview

Basically accelerators brings you ...

from nearly a bottle of hydrogen

to a little bit before this

How much time(distance) does it take from the source to collisions? (assumption, protons travels always at the speed of light)

In the Linac 2, basically nothing.
In the PSB, a bit less than than 1.2 s .
In the PS, a bit less than 3.6 s
In the SPS, a bit less than 16.8 s In the LHC, minimum 30 minutes

| $821.6 \mathrm{~s} \rightarrow 546480000 \mathrm{~km}$
about 3.7 time the distance Sun-Earth

Dipoles

time (s) [21.6 s]
Force given by the vertical magnetic field compensates the centrifugal force to keep the particles on the central trajectory, i.e. in the center of the beam pipe.

A fast dipole, able to deflect the beam in few μ s is called kicker. A kicker is used to extract the beam from the machine.

CERN-SPS dipoles, in total about 500

An example of cycling machine: the CERN-PS (Proton Synchrotron)
$B(t)$ or $E(t)$
$\xrightarrow{\text { time }}$

$$
\frac{d B}{d t}=24 G / m s
$$

PS is a slow synchrotron: pulses every 1.2 s (or multiples)

PS radius: 100 m
Injection: $B=1013 G(0.1013 \mathrm{~T}) \mathrm{E}=1.4 \mathrm{GeV}$
Extraction (max): 12000 G (1.2T) E $\sim 26 \mathrm{GeV}$

An example of cycling machine: the CERN-PS (Proton Synchrotron)
$B(t)$ or $E(t)$
$\xrightarrow{\text { time }}$

$$
\frac{d B}{d t}=24 G / m s
$$

PS is a slow synchrotron: pulses every 1.2 s (or multiples)

PS radius: 100 m
Injection: $B=1013 G(0.1013 \mathrm{~T}) \mathrm{E}=1.4 \mathrm{GeV}$
Extraction (max): 12000 G (1.2T) E $\sim 26 \mathrm{GeV}$

INTERLUDE: THE TERMINATOR-3 ACCELERATOR

We apply some concepts to the accelerator shown in Terminator-3 [Columbia Pictures, 2003]

- Estimation of the magnetic field

No way!

- Energy $=5760 \mathrm{GeV}$
- Radius $\sim 30 \mathrm{~m}$
- Field $=5760 / 0.3 / 30 \sim 700 \mathrm{~T}(\mathrm{a}$ lot !)

Energy of the machine (left) and size of the accelerator (right)

- Why the magnet is not shielded with iron ?
- Assuming a bore of 25 mm radius, inner field of 700 T , iron saturation at 2 T , one needs $700 * 25 / 2=9000 \mathrm{~mm}=9 \mathrm{~m}$ of iron... no space in their tunnel!
- In the LHC, one has a bore of 28 mm radius, inner field of 8 T , one needs $8 * 25 / 2=100 \mathrm{~mm}$ of iron
- Is it possible to have 700 T magnets ??

A magnet whose fringe field is not shielded

Two dipoles and magnets you should know very well

Earth Magnetic Field : ~ 0.6 Gauss
Typical SPS dipole field: ~ 20000 Gauss (2 Tesla)

Two-in-one magnet design

The LHC is one ring where two accelerators are coupled by the magnetic elements.

$\mathrm{Nb}-\mathrm{Ti}$

superconducting cable in a Cu matrix

Typical LHC Operational cycle

Synchrotrons: strong focusing machine

Dipoles are interleaved with quadrupoles to focus the beam.
Quadrupoles act on charged particles as lens for light. By alternating focusing and defocusing lens (Alternating Grandient quadrupoles) the beam dimension is kept small (even few mum²).

QUADRUPOLE

focusing quadrupole
defocusing quadrupole

Example of FODO lattice

The beam point of view - Those are sextupoles - Six poles

Diamond light source - UK
\longleftarrow LHC Cell - Length about 110 m (schematic layout)

Example of FODO lattice

The beam point of view - Those are sextupoles - Six poles

Diamond light source - UK
\longleftarrow LHC Cell - Length about 110 m (schematic layout)

Quadrupoles are also two-in one

At 7 TeV :
$I_{\max }=11850 \mathrm{~A}$
Field $=225 \mathrm{~T} / \mathrm{m}$

Weight = 6.5 Tons
Length $=3.1 \mathrm{~m}$

Our reference frame: $x x^{\prime}$, the phase space

The space occupied in the $x x^{\prime}$ (or yy') plane by the beam at a given position in the machine is defined as Emittance

Definition of envelope

Beam physical dimension

The enveloppe is defined as the maximum amplitude for which the particle remains in the machine vacuum chamber.

Envelope around the LHC

The LHC collision optics in one slide

CMS/TOTEM

Particle transport in a lattice

Particle transport in a lattice

Tune

Tune: number of oscillations (called betatronic) in the $x x^{\text {‘ }}$ plane a particle does in one machine turn.

The tune depends on the quadrupoles setting

Tune and resonances

Like on a swing, to keep the oscillations bounded in amplitude, one has to avoid to excite the beam in a resonant way.

The tune has to be far away from some values, like exciting the beam with the same force at each turn

Tune and resonances

Like on a swing, to keep the oscillations bounded in amplitude, one has to avoid to excite the beam in a resonant way.

The tune has to be far away from some values, like exciting the beam with the same force at each turn

Tune: number of betatron oscillation in the transverse plane

Tune: number of betatron oscillation in the transverse plane

A synchrotron in a view: LEIR (Low Energy lon Ring)

"Cold electron beam"

Electron cooling

Electron cooler increases order Cold electrons reduce the velocity spread of hot particles

Summary: an accelerator that you know very well

1. Three Electron guns (for red, green, and blue phosphor dots)
2. Electron beams
3. Focusing coils
4. Deflection coils
5. Anode connection
6. Mask for separating beams for red, green, and blue part of displayed image
7. Phosphor layer with red, green, and blue zones
8. Close-up of the phosphor-coated inner side of the screen

Real beam images

Courtesy of B. Goddard

Real beam images

Courtesy of B. Goddard

Summary: Building Blocks of an accelerator

I) A particle source

2) An accelerating system

Everything under vacuum

Summary: Building Blocks of an accelerator

I) A particle source

2) An accelerating system

Everything under vacuum

Apples vs Antiapples: protons vs antiprotons

Do protons fall in an accelerator?

And what about antiprotons?

Summary: Building Blocks of an accelerator

I) A particle source

2) An accelerating system

Everything under vacuum

Summary: Building Blocks of an accelerator

I) A particle source

2) An accelerating system

Everything under vacuum

Acceleration

- Particles are accelerated by an RF (radio frequency) electric field which is confined in cavities.
- The electric field varies in time as a sinus wave in such a way, that at each revolution, the particle comes back at the RF to see the acceleration.

$$
\Rightarrow \Delta E_{1}=e \hat{V}_{\mathrm{RF}} \sin \phi_{1}
$$

Acceleration

- Particles are accelerated by an RF (radio frequency) electric field which is confined in cavities.
- The electric field varies in time as a sinus wave in such a way, that at each revolution, the particle comes back at the RF to see the acceleration.

$$
\Rightarrow \Delta E_{1}=e \hat{V}_{\mathrm{RF}} \sin \phi_{1}
$$

Acceleration I

Acceleration again with Lorentz force:

$$
\overline{F(t)}=q(\overline{E(t)}+\overline{v / t)} \otimes \overline{B / t)})
$$

In a well defined part of the accelerator, a RF (radio frequency) cavity generates an electric field parallel to the velocity of a zero divergence particle. The cavity itself acts as a resonator.

Obs: The magnetic field associated to the RF wave is negligible (for us).

RF systems, LEP, LHC

Example for LHC:
485 keV gain per turn ACCELERATION TAKES TIME

How long is a wave?
fcav $=400 \mathrm{MHz}$
$\lambda=\mathrm{c} / \mathrm{fcav} \sim 75 \mathrm{~cm}$

SUPERCONDUCTING CAVITY WITH ITS CRYOSTAT
A typical cavity can provide from few kV/m few MV/m

Example for LEP:

120 cavities (room temperature) at 352 MHz , provided over $\mathbf{3 0 0}$ MV circumferential voltage (! that's why we do not bend with E fields...)

Then, the new superconducting RF provided 2000 MV circumferential voltage (LEP was 27 km circumference, basically filled by RF cavities)

RF Cavity 2013

RF Cavity 2013

Example of RF cavities in the PS

The dimension of the cavity changes with the RF wave length

World Radio Switzerland: 88.4 MHz

Some italian radios (Provincia di Vicenza)

(Mhz)	nOminativo
87.60	EASY NETWORK
87.85	RADIO CAPITAL
88.10	RAI, RADIO UNO
88.40	RADIO PADOVA
88.70	RADIO RICERCA REALTA' (CIRC. MARCONI)
89.00	RAI, RADIO DUE
89.30	RADIO DEEJAY
89.60	RELLISSIMA FM
89.90	RUM RADIO TRE
90.20	RADIO OREB (CIRCUITO MARCONI)
90.40	RADIO PICO
90.65	RADIO COMPANY
90.80	RADIO RICERCA REALTA' (CIRC. MARCONI)
90.90	RADIO SOLE
91.10	RADIO BIRIKINA
91.30	RADIO PITERPAN
91.60	RARRRISO
91.60	RAM

(Mhz)	nominativo
97.70	RADIO COLLINA STUDIO UNO
97.95	RADIO FOLLIA
98.20	RADIO CAPITAL
98.45	BUM BUM NETWORK
98.60	RAI, RADIO TRE
98.70	EASY NETWORK
99.00	TRV TELE RADIO VENETA
99.30	RADIO PITERPAN
99.55	RADIO PRINCIPESSA
99.80	RDS, RADIO DIMENSIONE SUONO
100.05	RSB RADIO SAN BONIFACIO
100.25	RCA - RADIO CITY ANTENNA UNO
100.50	RADIO COMPANY
100.80	RMC, MONTECARLO
101.00	RADIO BLU
101.30	RCA - RADIO CITY ANTENNA UNO
101.50	RADIO ITALIA SOLO MUSICA ITALIANA

Radio Caroline: $1485 / 1520 \mathrm{kHz}$

from wikipedia

Longitudinal focusing, a pendulum ...

- Particles are confined within a range in phase and energy called BUCKET and are grouped into bunches by the electric field.

Longitudinal focusing, a pendulum ...

- Particles are confined within a range in phase and energy called BUCKET and are grouped into bunches by the electric field.

Longitudinal focusing, a pendulum ...

- Particles are confined within a range in phase and energy called BUCKET and are grouped into bunches by the electric field.

A chain of buckets

Courtesy
E. Wilson

Number of buckets:
possible positions along the machine circumference where there could be a bunch.

In the example: 3 buckets and 2 bunches

Summary part I

- Lattice of a machine:
- sequence of dipoles (to bend), quadrupoles (to focus), and RF cavities (to accelerate or keep the beam bunched)
- A synchrotron is an accelerator where:
- Magnetic fields and energy change in a synchronous way to keep the beam on a fixed radius of curvature
- The beam is described by:
- Transverse emittance: surface occupied on the (displacement, divergence) plane by a group of particles
- Longitudinal emittance: surface occupied on the (time, energy) plane by a group of particles defined as a bunch sitting in a bucket

Summary: Building Blocks of an accelerator

I) A particle source

2) An accelerating system

Everything under vacuum

Summary: Building Blocks of an accelerator

I) A particle source

2) An accelerating system

Everything under vacuum

AD (Antiproton decelerator)

Lattice quadrupoles

Momentum $\mathrm{p}[\mathrm{GeV} / \mathrm{c}]$

Experiments

Electron cooler

Example of FODO lattice

The beam point of view - Those are sextupoles - Six poles

Diamond light source - UK
\longleftarrow LHC Cell - Length about 110 m (schematic layout)

Example of FODO lattice

The beam point of view - Those are sextupoles - Six poles

Diamond light source - UK
\longleftarrow LHC Cell - Length about 110 m (schematic layout)

Our reference frame: $x x^{\prime}$, the phase space

The space occupied in the $x x^{\prime}$ (or yy') plane by the beam at a given position in the machine is defined as Emittance

Classical mechanics.... spring with a mass

$F=m a=m \frac{d^{2} x}{d t^{2}}=-k x$
with \boldsymbol{k} the spring constant and \boldsymbol{m} the mass

Solution of the equation of motion is a periodic function:

$$
x(t)=A \cos (2 \pi f t+\phi)
$$

with 1 /period equals to

$$
f=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}
$$

Classical mechanics.... spring with a mass

$F=m a=m \frac{d^{2} x}{d t^{2}}=-k x$
with \boldsymbol{k} the spring constant and \boldsymbol{m} the mass

Solution of the equation of motion is a periodic function:

$$
x(t)=A \cos (2 \pi f t+\phi)
$$

with 1 /period equals to

$$
f=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}
$$

Equation of motion, not too in details

Equation of motion of a particle in an accelerator composed by a sequence of elements, each one eventually with a \boldsymbol{k} at a position \boldsymbol{s} of the ring, repeated at every \boldsymbol{C}
*Hill's equation: pendulum-like with non-constant spring force wrt to s.

$$
\frac{d^{2} x}{d s^{2}}+K(s) x=0 \quad \text { beer = solution } \longrightarrow x(s)=a \sqrt{\beta(s)} \cos \left(\phi(s)+\phi_{0}\right)
$$

Local force at a position sin the ring

$$
K(s) \stackrel{1 / \rho^{2}+k(s)}{\substack{\text { Dipoles }}}
$$

forget them for a moment
*there was a Mr. Hill, an astronomer

"I THINK YOU SHOULD BE MORE
EXPLICIT HERE IN STEP TWO." me too... in a moment...

Solution of Hill's equation

$$
x(s)=a \sqrt{\beta(s)} \cos \left(\phi(s)+\phi_{0}\right)
$$

This actually... look alike should not be there...
The beta function is a product of the locally changing force in the accelerator, i.e., of the quadrupoles. Every section of an accelerator has a constant k, so alone would be similar to an harmonic oscillator

$$
x(t)=A \cos (2 \pi f t+\phi)
$$

this contains k and m

By definition (ipse dixit...): $\quad \phi(s)=\int \frac{1}{\beta(s)} d s$
is called the phase advance

Definition of envelope

Beam physical dimension

Relationship between beam ellipse and beta

Nearly no beer ... full proof ...
if the emittance is a surface this can be an amplitude (I am cheating... I know)

$\left[u^{\prime \prime}-u \cdot \phi^{\prime 2}+K \cdot u\right] \cdot \cos \left(\phi+\varphi_{0}\right)-\left[2 \cdot u^{\prime} \cdot \phi^{\prime}+u \cdot \phi^{\prime \prime}\right] \sin \left(\phi+\varphi_{0}\right)=0$
beer + trick. Coeffs in front of sin et cos should be zero and $\phi(s)=\int_{0}^{s} \frac{d \tilde{s}}{u^{2}(\tilde{s})}$
$\alpha(s):=-\frac{\beta^{\prime}(s)}{2} \underset{u^{\prime \prime}-\frac{1}{u^{3}}+K \cdot u=0 \xrightarrow[\text { def. }]{\text { def. }} \beta(s):=u^{2}(s) \longrightarrow x^{\prime}(s)=-\frac{\sqrt{\varepsilon}}{\sqrt{\beta(s)}}\left\{\alpha(s) \cdot \cos \left(\phi(s)+\varphi_{0}\right)+\sin \left(\phi(s)+\varphi_{0}\right)\right\}}{\text { beer }}$
$\sin ^{2}\left(\phi+\varphi_{0}\right)=\left(\sqrt{\frac{\beta}{\varepsilon}} \cdot x^{\prime}+\frac{\alpha}{\sqrt{\varepsilon \beta}} \cdot x\right)^{2} \xrightarrow{\text { def. }} \gamma(s):=\frac{1+\alpha^{2}(s)}{\beta(s)}$
We brilliantly find...

..... what we wanted...

$\xrightarrow{\text { oh surprise... }} \gamma x^{2}+2 \alpha x x^{\prime}+\beta x^{\prime 2}=\epsilon$

Learned:
a) definition of Twiss parameters comes from the equation of motion and beta function
b) The dynamics is really on/within an ellipse

Twiss parameters:

$$
\begin{aligned}
& \alpha(s):=-\frac{\beta^{\prime}(s)}{2} \\
& \gamma(s):=\frac{1+\alpha^{2}(s)}{\beta(s)} \\
& \beta(s)
\end{aligned}
$$

Those are not the relativistic homonyms

THE LAW: Lioville theorem

Theorem: In the vicinity of a particle, the particle density in phase space is a constant if the particle move in an external magnetic field or in a general field which the force do not depend upon velocity (ipse dixit...), i.e., the beam is like an incompressible fluid in phase space

Implications:

a) the emittance is conserved when the beam is transported via a magnetic system

The ellipse is distorted/streched but the surface is conserved.
b) the emittance is NOT conserved if we accelerate, except if we normalize the emittance wrt to $\beta \gamma$ (relativistic). \mathbf{x}^{\prime} is reduced by the acceleration.

$$
\epsilon_{n o r m}=\epsilon_{p h y s} * \beta_{r e l} * \gamma_{r e l}
$$

c) if we want to reduce emittance at constant energy, we have to "cheat": BEAM COOLING
"Cold electron beam"

Electron cooling

Hot and large emittance beam

"Hot antiproton beam"

Electron cooler increases order Cold electrons reduce the velocity spread of hot particles

What is the LHC ?

LHC: Large Hadron Collider

LHC is a collider and synchrotron storage ring:
Large: high energy needs large bending radius due to the maximum magnetic field existing technology can produce 26.7 km circumference

Hadrons:

p p collision \Rightarrow a) synchrotron radiation
b) discovery machine.

Collider: particles are stored in two separated rings which are synchrotrons, and accelerated from injection energy (450 GeV) to 7 TeV . At 7 TeV the two beams are forced to cross in collision points to interact.
The beams are stored at 7 TeV for few 10 h to produced collisions. When the intensity is too low, the two rings are emptied and the process of injecting, accelerating, storing and colliding is restarted, until one finds the Higgs or supersymmetry... then one needs a bottle of Champaign and a nobel price ...

The LHC run1 timeline $1 / 2$

The LHC run1 timeline $1 / 2$

August 2008
First Injection tests

The LHC run1 timeline $1 / 2$

August 2008
First Injection tests

September 10, 2008
Circulating beams

The LHC run1 timeline $1 / 2$

August 2008
First Injection tests

September 19, 2008
Incident

The LHC run1 timeline $1 / 2$

August 2008
First Injection tests

September 19, 2008
Incident

The LHC run1 timeline $1 / 2$

August 2008
First Injection tests

September 10, 2008
Circulating beams

November 20, 2009
| Beams back

September 19, 2008
Incident

March 30, 2010
First collisions at 7 TeV
CM

The LHC run1 timeline $1 / 2$

September 10, 2008
Circulating beams

November 20, 2009
|Beams back

September 19, 2008
Incident

November 2010

- First Lead ion run

The LHC run1 timeline $1 / 2$

September 10, 2008
Circulating beams

November 20, 2009
| Beams back

June 28, 2011
1380 bunches

2011

September 19, 2008
Incident

November 2010

First Lead ion run

The LHC run1 timeline $1 / 2$

August 2008
First Injection tests

December 2011
$5.6 \mathrm{fb}^{-1}$

June 28, 2011
1380 bunches
November 20, 2009
[Beams back

2010
2011
2012

September 19, 2008
Incident

November 2010

- First Lead ion run

The LHC run1 timeline $1 / 2$

August 2008
First Injection tests

September 10, 2008
Circulating beams

September 19, 2008
Incident

November 20, 2009
[Beams back

June 28, 2011
1380 bunches

2010

December 2011
$5.6 \mathrm{fb}^{-1}$
March 2012
4 TeV

November 2010

- First Lead ion run

The LHC run1 timeline $1 / 2$

August 2008
First Injection tests

December 2011
$5.6 \mathrm{fb}^{-1}$

June 28, 2011
1380 bunches

November 20, 2009
[Beams back

September 19, 2008
Incident

March 30, 2010
First collisions at 7 TeV CM

November 2010

First Lead ion run

July 4, 2012
Higgs Seminar

The LHC run1 timeline 2/2

The LHC run1 timeline 2/2

December 2011
$5.6 \mathrm{fb}^{-1}$

June 28, 2011
1380 bunches

March 30, 2010
First collisions at 7 TeV CM

November 2010

First Lead ion run

Comments (21-Feb-2013 09:05:25)
Phone:77600
*** END OF RUN 1 ***
No beam for a while. Access required
time estimate: ~ 2 years

February 21, 2013
Long shutdown 1

4 TeV2013

January 2013
Protons \& Lead

What is the LHC ?

LHC: Large Hadron Collider

LHC is a collider and synchrotron storage ring: ILC is a collider but is not a synchrotron storage ring

Large: high energy needs large bending radius due to the maximum magnetic field existing technology can produce 26.7 km circumference

Radius: limited by cost, and by the radius of the earth...

Given by the physics
This will depend on the mass of the particles we want to discover

LHC geometry: it is not flat... and it is not round

Tunnel build almost entirely on a geological layer called "Molasse", easy to tunnel, but reach of water.

Slope is I.4\%

Different approaches: fixed target vs collider

Fixed target

$E_{C M}=\sqrt{2\left(E_{\text {beam }} m c^{2}+m^{2} c^{4}\right)} \quad \ll$
$\ll \quad E_{C M}=2\left(E_{b e a m}+m c^{2}\right)$

Storage ring/collider

This usually is defined as $\sqrt{ } \mathrm{s}$

ISR: first proton-proton collider

The proper particle for the proper scope

Electrons (and positrons) are (so far) point like particles: no internal structure

The energy of the collider, namely two times the energy of the beam colliding is totally transferred into the collision

$$
\text { Ecoll= EbI + Eb2= 2Eb = } 200 \mathrm{GeV} \text { (LEP) }
$$

Pros: the energy can be precisely tuned to scan for example, a mass region.

Precision measurement (LEP)
Cons: above a certain energy is no more possible to use electrons because of too high synchrotron radiation

Protons (and antiprotons) are formed by quarks (uud) kept together by gluons

The energy of each beam is carried by the proton constituents, and it is not the entire proton which collides, but one of his constituent

$$
\text { Ecoll < } 2 \mathrm{~Eb}(8 \mathrm{TeV})
$$

Pros: with a single energy possible to scan different processes at different energies.

Discovery machine (LHC)
Cons: the energy available for the collision is lower than the accelerator energy

Synchrotron radiation

Radiation emitted by charged particles accelerated longitudinally and/or transversally Power radiated per particle goes like: 4th power of the energy
(2nd power) ${ }^{-1}$ of the bending radius

$$
P=\frac{2 c \times E^{4} \times r_{0}}{3 \rho^{2}\left(m_{0} \times c^{2}\right)^{3}}
$$

$$
\text { (4th power) }{ }^{-1} \text { of the particle mass }
$$

$$
r_{0}=\frac{q^{2}}{4 \pi \varepsilon_{0} m_{0} c^{2}} \quad \text { particle classical radius }
$$

Energy lost per turn per particle due to synchrotron radiation:
$\mathrm{e}-\approx$ some GeV (LEP)
$p \approx$ some keV (LHC)

We must protect the LHC coils even if energy per turn is so low

Power lost per m in dipole: some W Total radiated power per ring: some kW

Luminosity

Example for an LHC insertion with ATLAS or CMS DD CPOSS SECEAD

Luminosity

Number of particles per bunch Revolution frequency $\mathrm{N}_{\text {beam1 }} * \mathrm{~N}_{\text {beam } 2}=\mathrm{N}^{2}$

Beam dimension at the IP

$$
\underbrace{\sigma_{x, y}^{*}=\sqrt{\beta_{x, y}^{*} \cdot \epsilon_{x, y}}} \quad F=1 / \sqrt{1+\left(\frac{\theta_{c} \sigma_{z}}{2 \cdot \sigma^{*}}\right)^{2}}
$$

At first look, the smaller the better

LHC Operational page

Where we are now ...

Where we are now ...

Inner triplet: final focusing

\Rightarrow how to make the beam small at the IP

Triplets before lowering in the tunnel

Injection optics and during acceleration IP5- CMS

LHC beam screen with cooling pipes

Atmosphere pressure $=750$ Torr
Moon atmospheric pressure $=510^{-13}$ Torr

Beam screen to protect Superconducting magnets from Synchrotron radiation.

Holes for vacuum pumping

Vacuum required to avoid unwanted collision far from the IPs and decrease the Luminosity

$$
\text { Typical vacuum: } 10^{-13} \text { Torr }
$$

There is $\sim 6500 \mathrm{~m}^{3}$ of total pumped volume in the LHC, like pumping down a cathedral.

What is the LHC?

LHC: Large Hadron Collider

LHC is a collider and synchrotron storage ring: ILC is a collider but is not a synchrotron storage ring

Large: high energy needs large bending radius due to the maximum magnetic field existing technology can produce 26.7 km circumference

Hadrons: p p collision \Rightarrow synchrotron radiation and discovery machine.

Collider: particles are stored in two separated rings which are synchrotrons, and accelerated from injection energy (450 GeV) to 7 TeV . At 7 TeV the two beams are forced to cross in collision points to interact.
The beams are stored at 7 TeV for few 10 h to produce collisions. When the intensity is too low, the two rings are emptied and the process of injecting, accelerating, storing and colliding is restarted, until one finds the higgs or supersymmetry... then one needs a bottle of Champaign and a nobel price ...

Two-in-one magnet design

The LHC is one ring where two accelerators are coupled by the magnetic elements.

$\mathrm{Nb}-\mathrm{Ti}$

superconducting cable in a Cu matrix

$\operatorname{Cos} \theta$ coil of main dipoles

A 2D $\cos \theta$ current distribution generates a quasi-perfect vertical field in the aperture between the two conductors.

$\mathrm{I}=\mathrm{I}_{\mathrm{o}} \cos \vartheta$
$\mathrm{B}_{\vartheta}=\frac{\mu \mathrm{o} \mathrm{I}_{\mathrm{o}}}{2 \mathrm{r}_{\mathrm{o}}} \cos \vartheta \quad \mathrm{B}_{\mathrm{x}}=\mathrm{o}$
$B_{\vartheta}=\frac{\mu \mathrm{o} \mathrm{I}_{\mathrm{o}}}{2 \mathrm{r}_{\mathrm{o}}} \sin \vartheta \quad \mathrm{B}_{\mathrm{y}}=\frac{\mu \mathrm{o} \mathrm{I}_{\mathrm{o}}}{2 \mathrm{r}_{\mathrm{o}}}$

Dipolar Vertical field

$\operatorname{Cos} \theta$ coil of main dipoles

A 2D $\cos \theta$ current distribution generates a quasi-perfect vertical field in the aperture between the two conductors.

$I=I_{o} \cos \vartheta$
$\mathrm{B}_{\vartheta}=\frac{\mu \mathrm{o} \mathrm{I}_{\mathrm{o}}}{2 \mathrm{r}_{\mathrm{o}}} \cos \vartheta \quad \mathrm{B}_{\mathrm{x}}=\mathrm{o}$
$B_{\vartheta}=\frac{\mu o I_{o}}{2 r_{o}} \sin \vartheta \quad B_{y}=\frac{\mu o I_{o}}{2 r_{o}}$
3
Dipolar Vertical field

Quadrupoles are also two-in one

At 7 TeV :
$I_{\max }=11850 \mathrm{~A}$
Field $=225 \mathrm{~T} / \mathrm{m}$

Weight = 6.5 Tons
Length $=3.1 \mathrm{~m}$

Very, very short introduction to Superconductivity for accelerators

[$\mathrm{kA} \mathrm{mm}^{-2}$]

Flux Density
[T]

Superconductivity is a property of some materials. At very low temperature they can carry currents without voltage drop, i.e. their resistivity goes to zero. LHC cables: Nb-Ti working at 1.9 K

The conductor remains Superconductor if its status in Current Density, Temperature, B field phase space is below the Critical Surface

The distance between the working point and the critical surface for a fixed B field and Current Density is the temperature margin (critical temperature)

Transition to a normal conducting state is called magnet quench
the temperature in a magnet ?

V. V. S. Introduction to Superconductivity II

Beam losses can eat the temperature

 margin because of energy depositionLimit of accepted losses: $\sim 10 \mathrm{~mW} / \mathrm{cm}^{3}$ to avoid $\Delta \mathrm{T}>2 \mathrm{~K}$, the temperature margin

Temperature margin (K)

How much is $10 \mathrm{~mW} / \mathrm{cm}^{3}$?

A fluorescente (known as neon) tube can be typically 1.2 m long with a diameter of 26 mm , with an input power of 36 W .

This makes a power density of about $56 \mathrm{~mW} / \mathrm{cm}^{3}$.

The power of a neon tube can quench about 5 LHC dipoles at collision energy.... because one does not need 10 $\mathrm{mW} / \mathrm{cm}^{3}$ for the entire volume of a magnet, but for about $\mid \mathrm{cm}^{3}$.

If you do the same basic computation with a normal
100 W resistive bulbs is even worst

When something goes wrong.... bad quench...

Which coolant ? Liquid superfluid helium

LHC cryogenics will need 40,000 leak-tight pipe junctions. 12 million litres of liquid nitrogen will be vaporised during the initial cooldown of 31,000 tons of material and the total inventory of liquid helium will be 700,000 I (about 100 tonnes).

Why helium?

He at 1.8-2 K has a very large thermal conductivity and very low viscosity

What happens if I put a hand in front of the beam?

Why do we have to protect the machine?

Total stored beam energy at top energy (7 TeV), nominal beam, 334 MJ (or I 20 kg TNT) Nominal LHC parameters: I.I5 $10^{\prime \prime}$ protons per bunch 2808 bunches
0.5 A beam current

British aircraft carrier:

HMS Illustrious and Invincible weigh 20,000 tons all-up and fighting which is $2 \times 10^{7} \mathrm{~kg}$.
Or the USS Harry S. Truman (Nimitz-class) - 88,000 tons.

Energy of nominal LHC beam $=334 \mathrm{MJ}$ or $3.34 \times 10^{8} \mathrm{~J}$
which corresponds to the aircraft carrier navigating
 at $\mathrm{v}=5.8 \mathrm{~m} / \mathrm{s}$ or 1 I .2 knots (or around 5.3 knots if you're an American aircraft carrier)

So, what if something goes wrong?
What is needed to intercept particles at large transverse amplitude or with the wrong energy to avoid quenching a magnet?

Few years ago something went wrong during a test ...

LHC extraction from the SPS $450 \mathrm{GeV} / \mathrm{c}$, 288 bunches
Transverse beam size $0.7 \mathrm{~mm}(1 \mathrm{\sigma})$
$1.15 \times 10^{11} \mathrm{p}^{+}$per bunch, for total intensity of $3.3 \times 10^{13} \mathrm{p}^{+}$
Total beam energy is 2.4 MJ , lost in extraction test (LHC 334 MJ)

Outside beam pipe

Inside beam pipe

B.Goddard CERN AB/BT

Tevatron accident in 2003 (courtesy of N. Mokhov)

Accident caused by uncontrolled movement of beam detectors (Roman Pots) which caused a secondary particle shower magnet quench \rightarrow no beam dump \rightarrow damage on approximatively 550 turns

Tungsten collimator.Tmelting $=3400^{\circ} \mathrm{C}$
1.5 m long stainless steel collimator

Movable collimators, they to be robust

Materials chosen:
Metals where possible or C-C fibers

Robustness required, listen to $10^{13} \mathrm{p}$ on a C-C Jaw

SPS experiment:
a) 1.5 el 3 protons, $450 \mathrm{GeV}, 0.7^{*} \mathrm{I} .2 \mathrm{~mm}^{2}(\mathrm{rms})$ on CC jaw
b) 3 el 3 protons, $450 \mathrm{GeV}, 0.7^{*} 1.2 \mathrm{~mm}^{2}(\mathrm{rms})$ on CC jaw \Rightarrow full design CASE
equivalent to about $\mathrm{I} / 2 \mathrm{~kg}$ of TNT

Movable collimators, they to be robust

Materials chosen:
Metals where possible or C-C fibers

Robustness required, listen to $10^{13} \mathrm{p}$ on a C-C Jaw

SPS experiment:
a) 1.5 el 3 protons, $450 \mathrm{GeV}, 0.7^{*} \mathrm{I} .2 \mathrm{~mm}^{2}(\mathrm{rms})$ on CC jaw
b) 3 el 3 protons, $450 \mathrm{GeV}, 0.7^{*} 1.2 \mathrm{~mm}^{2}(\mathrm{rms})$ on CC jaw \Rightarrow full design CASE
equivalent to about $\mathrm{I} / 2 \mathrm{~kg}$ of TNT

Movable collimators, they to be robust

Materials chosen:
Metals where possible or C-C fibers

Robustness required, listen to $10^{13} \mathrm{p}$ on a C-C Jaw

SPS experiment:
a) 1.5 el 3 protons, $450 \mathrm{GeV}, 0.7^{*} \mathrm{I} .2 \mathrm{~mm}^{2}(\mathrm{rms})$ on CC jaw
b) 3 el 3 protons, $450 \mathrm{GeV}, 0.7^{*} 1.2 \mathrm{~mm}^{2}(\mathrm{rms})$ on CC jaw \Rightarrow full design CASE
equivalent to about $\mathrm{I} / 2 \mathrm{~kg}$ of TNT

Movable collimators, they to be robust

Materials chosen:
Metals where possible or C-C fibers

Robustness required, listen to $10^{13} \mathrm{p}$ on a C-C Jaw

SPS experiment:
a) 1.5 el 3 protons, $450 \mathrm{GeV}, 0.7^{*} \mathrm{I} .2 \mathrm{~mm}^{2}(\mathrm{rms})$ on CC jaw
b) 3 el 3 protons, $450 \mathrm{GeV}, 0.7^{*} 1.2 \mathrm{~mm}^{2}(\mathrm{rms})$ on CC jaw \Rightarrow full design CASE
equivalent to about $\mathrm{I} / 2 \mathrm{~kg}$ of TNT

Collimator animation 2013

Collimator animation 2013

At 7 TeV , beam really small, 3σ diam. $\sim 1.2 \mathrm{~mm}$

Precision required for collimator movements about $25 \mu \mathrm{~m}$

At 7 TeV , beam really small, 3σ diam. $\sim 1.2 \mathrm{~mm}$

Precision required for collimator movements about $25 \mu \mathrm{~m}$

Beam extraction, emergency or not...

At the end of every "fill", when too low luminosity, or when BLM system triggers, both beams extracted on an external beam dump, in one turn. Beam dump built to absorbe full power at full energy.
Fast kicker magnet

Beam here is few mm^{2}

Septum magnet deflecting the extracted beam
H-V kicker for painting the beam

Beam Dump

Block
Block

about 500 m

Scheme of one of the beam absorbers

Spot size on the beam dump

Scheme of one of the beam absorbers

CERN accelerator complex overview

Few LHC numbers ...

Luminosity	I IO
Particle per bunch	$\mathrm{I}, \mathrm{I} 5 \mathrm{IO}$
Bunches	2808
Revolution frequency	$\mathrm{II}, 245 \mathrm{kHz}$
Crossing rate	40 MHz
Nomalised Emittance	$3.75 \mu \mathrm{~m} \mathrm{rad}$
B-function at the collision	
point	

LHC layout and few parameters

Particle type	protons (heavy ions, Pb82+)
Energy	450 GeV (injection) $7 \mathrm{TeV}($ collision energy) $2,75 \mathrm{TeV} / \mathrm{u}$ (ions collision)
Circumference	26658 m
Revolution frequency	I I,245 kHz I turn= 89 mus
Number of rings	I (two-in-one magnet
design)	

Crossing angle

Angle @ IP to avoid that the 2808 bunches collides in other places than the IP in the LSS.
~ 30 unwanted collision per crossing

$$
F=1 / \sqrt{1+\left(\frac{\theta_{c} \sigma_{z}}{2 \cdot \sigma^{*}}\right)^{2}}
$$

$\boldsymbol{\theta}$	crossing angle	$285 \mu \mathrm{rad}$
$\boldsymbol{\sigma}$	RMS bunch length	7.55 cm
$\boldsymbol{\sigma} *$	RMS beam size (ATLAS-CMS)	$16.7 \mu \mathrm{~m}$
\boldsymbol{F}	L reduc. Factor	0.836

distance about 100 m

Basic components of a Neutrino beam

CNGS, conventional neutrino beam

CNGS looks for v_{τ} appearance in a beam of v_{μ} The beam is sent from the SPS at $400 \mathrm{GeV} / \mathrm{c}$ on the C target. It is "only" a 450 kW beam

CNGS target station

Highly radioactive area.
Everything has to be built to be remotely handled
For CNGS, 5 Carbon targets in situ.
One used, the other four in case of failure (never happened).

CNGS horn

CNGS horn

What can influence an accelerator?

The physics case:
the Z mass at LEP has been measured with an error of 2 MeV . Energy of the accelerator has to be know better than 20 ppm.

Energy measurements obtained by during last years of LEP operation

Nominal (GeV)	$E_{C M}(\mathrm{LEP})$ (GeV)
181	180.826 ± 0.050
182	181.708 ± 0.050
183	182.691 ± 0.050
184	183.801 ± 0.050
Combined	182.652 ± 0.050

What can influence the energy of a collider?

"Rappel"of strong focusing synchrotron optics

Stable orbit is bent by the main dipoles, centered in the quadrupoles, no field
Energy fixed by bending strength and cavity frequency
$f_{R F}=h \cdot f_{\text {rev }}$
$f_{\text {rev }}=\frac{v}{C_{c}}=\frac{v}{2 \pi \rho}=\frac{1}{2 \pi} \cdot \frac{q B_{0}}{m_{0} \gamma}$
A variation of the Circumference C induces changes in the energy proportional to α, the momentum compaction factor.

$$
\frac{\Delta E(t)}{E_{0}}=-\frac{1}{\alpha} \frac{\Delta C(t)}{C_{c}}
$$

_ Central Orbit
..... Actual Orbit
$B=$ Bending Dipole
QF = Focusing Quadrupole
QD = Defocusing Quadrupole

In LEP $\alpha=1.8610-4$ a small variation the circumference induces a large variation in energy

Moon tides can change earth geometry

Moon induces a earth deformation similar to water tide.

Total deformation of the LEP about 4 mm Energy variation of 100 ppm

The 12 h cycle is due to the earth deformation ppm

LEP TidExperiment

The effect is modulated by the different tide intensities and by the SUN tides

Moon tides can change earth geometry

Moon induces a earth deformation similar to water tide.

Total deformation of the LEP about 4 mm Energy variation of 100 ppm

The 12 h cycle is due to the earth deformation ppm

LEP TidExperiment

The effect is modulated by the different tide intensities and by the SUN tides

The problem: an accelerator is not in the middle of nothing

Observed variation of the bending strength of the LEP dipoles during the day

Influence of train leakage current

LEP beam pipe as ground for leakage current. Variation of the dipole field due to the current. Change in energy following the SNCF train table

The evidence,TGV to Paris at 16:50 ...

Correlation between trains and LEP energy

The future (personal view, pretty long term...)

- Laser plasma acceleration : few GeVs per meter

... that's not for tomorrow... yet...

The future (personal view, pretty long term...)

- Laser plasma acceleration : few GeVs per meter

... that's not for tomorrow... yet...

CERN accelerator complex overview

Thanks for your attention!!!

Electron clouds

Electron cloud in the vacuum beam pipe can be created by "avalanche" process :
I. few primary e^{-}generated by as photoelectrons, from residual gas ionization, extract by Synchrotron radiation
2. p^{+}bunches accelerate e^{-}(this depends from the bunch separation, i.e. 25 nsec in the LHC)
3. e^{-}impact on the wall and extract secondary e^{-}
and so on ... and the cloud can generate:
a) heating of the beam pipe \Rightarrow magnet heating
b) beam instabilities

(Courtesy
F.Ruggiero)

Animation from O. Brüning simulation
$\rightarrow 10$ subsequent bunch passages
Color describes the formation of the electron cloud

Electron clouds

Electron cloud in the vacuum beam pipe can be created by "avalanche" process :
I. few primary e^{-}generated by as photoelectrons, from residual gas ionization, extract by Synchrotron radiation
2. p^{+}bunches accelerate e^{-}(this depends from the bunch separation, i.e. 25 nsec in the LHC)
3. e^{-}impact on the wall and extract secondary e^{-}
and so on ... and the cloud can generate:
a) heating of the beam pipe \Rightarrow magnet heating
b) beam instabilities

(Courtesy
F.Ruggiero)

Animation from O. Brüning simulation
$\rightarrow 10$ subsequent bunch passages
Color describes the formation of the electron cloud

Electron clouds issues on beam

- Bunch passage, electrons accumulated near beam
centroid
2 - If there is offset between head and tail:
\rightarrow tail feels transverse electric field created by head
$3 \rightarrow$ tail become unstable

3. Particles mix longitudinally
\rightarrow also head can become unstable (above threshold)

Vertical emittance vs. time, for different EC densities @ LHC injection

Definition of beam emittance

