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TCP: CONGESTION CONTROL FOR THE INTERNET
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@ increase the rate steadily;
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TCP: CONGESTION CONTROL FOR THE INTERNET

AIMD - ADDITIVE INCREASE, MULTIPLICATE DECREASE:
@ increase the rate steadily;

@ on detecting congestion, decrease the rate to half

From a game-theoretic perspective,
AIMD is not an equilibrium !
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A game consists of

o A set of players N
e For each player i, a set of strategies .5;
e For each player ¢, a valuation function v; : 57 X S5 X
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THE TOPICS OF THESE LECTURES

In these lectures, I will touch on the following topics:

EQUILIBRIA: which solution makes sense to be selected by the
individuals and how can it be computed?

PRICE OF ANARCHY: How much does a society suffer when individuals
make their own decisions in comparison to a
centrally designed solution?

MECHANISMS: How can we alter the game to achieve a good
solution?



EQUILIBRIA

DOMINANT EQUILIBRIUM: Every player has a strategy which is optimal
for every choice of the other players.
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EQUILIBRIA

DOMINANT EQUILIBRIUM: Every player has a strategy which is optimal
for every choice of the other players.

ExXAMPLE: PRISONERS’ DILEMMA.

C D

cl1,1
D|o, 4

4,0
3,3

b

Strategy (D, D) is a dominant equilibrium (for example, for every
strategy of the column player, the row player prefers C to D.)



SOME NOTABLE GAMES

PUBLIC GOOD GAME:
e Each one contributes an amount, the total is multiplied by a
constant, and then divided equally.
e For example, for two players and a multiplier of 1.6, the game
looks like
0 10
0]10,0|8,-2
10 | -2,8| 6,6
o It is a dominant equilibrium for players to contribute nothing.
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PUBLIC GOOD GAME:

e Each one contributes an amount, the total is multiplied by a
constant, and then divided equally.
e For example, for two players and a multiplier of 1.6, the game

looks like

0
10

o It is a dominant equilibrium for players to contribute nothing.
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NASH EQUILIBRIA

Not all games have a dominant equilibrium.
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NASH EQUILIBRIA

Not all games have a dominant equilibrium.

> ﬁ ,}"’
, 0,0 | —1,1 | 1,-1
j 1,-1 | 0,0 | —1,1
F
| 1,1 | 1,-1 | 0,0

NaAsH EQUILIBRIUM: No player has an incentive to deviate, when we
fix the strategies of the other players. A kind of local optimum.

The Rock-Paper-Scissors game has a unique Nash equilibrium: each
strategy is played with probability 1/3.




THE THEOREM OF JOHN NASH

FEvery finite game has a Nash
equilibrium.

288 JOHN NASH

Since a criterion (3) for an eq. pt. can be expressed by the equating of n pairs
of continuous functions on the space of n-tuples 8 the eq. pts. obviously form &
closed subset of this space. Actually, this subset is formed from a number of
pieces of algebraic varieties, cut out by other algebraic varieties.

Existence of Equilibrium Points

A proof of this existence theorem based on Kakutani’s generalized fixed point
theorem was published in Proc. Nat. Acad. Sci. U. . A., 36, pp. 48-49. The proof
given here is a considerable improvement over that earlier version and is based
directly on the Brouwer theorem. We proceed by constructing a continuous
transformation 7 of the space of n-tuples such that the fixed points of T are
the equilibrium points of the game.

Tueores 1. Every finite game has an equilibrium point.

Proor. Let % be an n-tuple of mixed strategies, pi(8) the corresponding pay-off
to player i, and pia(8) the pay-off to player i if he changes to his a®* pure strategy
70 and the others continue to use their respective mixed strategies from s.
We now define a set of continuous functions of & by

@ia(8) = max (0, pia(8) — Pi(8))
and for each component s; of 8 we define a modification s; by
sit 2 @a(@)nia

T+ 2 eu®

5=
calling &' the n-tuple (si , 51, 85 - s)-

‘We must now show that the fixed points of the mapping T: $ — 8’ are the
equilibrium points.

First consider any n-tuple 8. In 8 the i* player’s mixed strategy s; will use
certain of his pure strategies. Some one of these strategies, say .., must be
“least profitable” so that pia(8) < pi(8). This will make .a(8) = 0.

Now if this n-tuple $ happens to be fixed under 7' the proportion of 7, used
in s, must not be decreased by 7. Hence, for all s, ¢.5(%) must be zero to prevent
the denominator of the expression defining s; from exceeding 1.

Thus, if 8 is fixed under 7, for any ¢ and 8 s(8) = 0. This means no player
can improve his pay-off by moving to a pure strategy s . But this is just a
criterion for an eq. pt. [see (2)].

Conversely, if & is an eq. pt. it is immediate that all ¢’s vanish, making 8
a fixed point under 7.

Since the space of n-tuples is a cell the Brouwer fixed point theorem requires
that T must have at least one fixed point 8, which must be an equilibrium point.

Symmetries of Games

An automorphism, or symmelry, of a game will be a permutation of its pure
strategies which satisfies certain conditions, given below.
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THE COMPUTATIONAL PROBLEM

Given a game, can we compute a (any) Nash equilibrium?
For 2 players, for example,

INPUT: two n X m arrays with integer values
OuTpUT: probabilities of the Nash equilibrium



ZERO-SUM GAMES

@ In zero-sum games of two players, the sum of the valuations is
everywhere 0: one player pays the other.

We can express a player’s goal as a

linear progra
j ., inear program
A [ J minimize v subject to:

, 0,0 | —1,1 | 1,—1 0oy —1-yp+1 ys<uv
ﬁ L-y1+0-y2—1-y3<w
v 4

[ —1,1 1, -1 0,0 y1+y2+ys=1

Y1,Y2,y3 > 0



MINMAX THEOREM (DUALITY)

THEOREM (VON NEUMANN, 1928)

In every zero-sum game there exists a pair of strategies that minimize
the mazimum losses of both players simultaneously.
L.e. Fvery zero-sum game has a Nash equilibrium.

There is an efficient algorithm to find a Nash equilibrium by solving
the associated linear program.



PPAD COMPLETENESS

The computational complexity of Nash equilibria for non-zero-sum
games was (partially) resolved only recently:

THEOREM (DASKALAKIS-GOLDBERG-PAPADIMITRIOU,

CHEN-DENG, 2006)
The problem of computing a Nash equilibrium is PPAD-complete.
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PPAD COMPLETENESS

The computational complexity of Nash equilibria for non-zero-sum
games was (partially) resolved only recently:

THEOREM (DASKALAKIS-GOLDBERG-PAPADIMITRIOU,

CHEN-DENG, 2006)
The problem of computing a Nash equilibrium is PPAD-complete.

PPAD is a class of problems that
o always have a solution.
o A solution can be found by a path-following algorithm. The catch
s that the path may have exponential length!
Typical problems in this computational class:
@ Brower’s fixed-point theorem

@ Sperner’s lemma



BROWER’S FIXED POINT THEOREM

THEOREM (BROWER, 1909)

FEvery continuous map of a compact convex body to itself has a fized
point, i.e. x such that f(z) = x.




SPERNER’S LEMMA

e Fix a triangulation of a triangle (or
simplex in higher dimensions)
@ Assign colors 1, 2, 3 to its nodes in an

arbitrary way except that
e corners get distinct colors /\/ /\/\

e each side gets only the two colors of 1
its corners
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e Fix a triangulation of a triangle (or
simplex in higher dimensions)

@ Assign colors 1, 2, 3 to its nodes in an
arbitrary way except that
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CONVERGENCE ISSUES

e Consider a finite game that is played repeatedly

@ Best response dynamics: each player plays best response (to
empirical distribution).

@ Since computing Nash equilibria appears to be a hard
computational problem, this process either does not converge or
converges slowly.

e It is computationally hard to predict Nash (best-response)
dynamics

If your laptop can’t find it, neither can the market.
Kamal Jain



CONVERGENCE ISSUES - EL FAROL BAR

The El Farol Bar game: A finite set of
players want to go to El Farol Bar
o If less than 60% of the population go
to the bar, they’ll all have a better
time than if they stayed at home.
o If more than 60% of the population
go to the bar, they’ll all have a worse
time than if they stayed at home.

This is a simple congestion game.
o It has many pure asymmetric Nash equilibria, but
@ no symmetric pure equiltbrium.

e What are the best-response (myopic) dynamics of such games?
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