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TCP: Congestion control for the Internet

AIMD - Additive increase, multiplicate decrease:

increase the rate steadily;

on detecting congestion, decrease the rate to half



TCP: Congestion control for the Internet

AIMD - Additive increase, multiplicate decrease:

increase the rate steadily;

on detecting congestion, decrease the rate to half

From a game-theoretic perspective,
AIMD is not an equilibrium !



The growth of Internet



What is a game?

Example: Rock-Paper-Scissors

0, 0 −1, 1 1,−1

1,−1 0, 0 −1, 1

−1, 1 1,−1 0, 0

A game consists of

A set of players N

For each player i, a set of strategies Si

For each player i, a valuation function vi : S1 × S2 × · · · × Sn → R
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The topics of these lectures

In these lectures, I will touch on the following topics:

Equilibria: which solution makes sense to be selected by the
individuals and how can it be computed?

Price of anarchy: How much does a society suffer when individuals
make their own decisions in comparison to a
centrally designed solution?

Mechanisms: How can we alter the game to achieve a good
solution?
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Equilibria

Dominant equilibrium: Every player has a strategy which is optimal
for every choice of the other players.

Example: Prisoners’ dilemma.

C D
C 1, 1 4, 0
D 0, 4 3, 3

Strategy (D,D) is a dominant equilibrium (for example, for every
strategy of the column player, the row player prefers C to D.)
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Some notable games

Public good game:

Each one contributes an amount, the total is multiplied by a
constant, and then divided equally.

For example, for two players and a multiplier of 1.6, the game
looks like

0 10
0 0, 0 8, -2

10 -2, 8 6, 6
It is a dominant equilibrium for players to contribute nothing.

Centipede game:
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98,101

100, 100
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Nash equilibria

Not all games have a dominant equilibrium.

0, 0 −1, 1 1,−1

1,−1 0, 0 −1, 1

−1, 1 1,−1 0, 0

Nash equilibrium: No player has an incentive to deviate, when we
fix the strategies of the other players. A kind of local optimum.
The Rock-Paper-Scissors game has a unique Nash equilibrium: each
strategy is played with probability 1/3.
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The theorem of John Nash

Theorem (Nash, 1951)

Every finite game has a Nash
equilibrium.



Part II

Computational issues of Nash

equilibria



The computational problem

Given a game, can we compute a (any) Nash equilibrium?
For 2 players, for example,

Input: two n×m arrays with integer values

Output: probabilities of the Nash equilibrium



Zero-sum games

In zero-sum games of two players, the sum of the valuations is
everywhere 0: one player pays the other.

0, 0 −1, 1 1,−1

1,−1 0, 0 −1, 1

−1, 1 1,−1 0, 0

We can express a player’s goal as a
linear program

minimize v subject to:

0 · y1 − 1 · y2 + 1 · y3 ≤ v

1 · y1 + 0 · y2 − 1 · y3 ≤ v

−1 · y1 + 1 · y2 + 0 · y3 ≤ v

y1 + y2 + y3 = 1

y1, y2, y3 ≥ 0



Minmax theorem (duality)

Theorem (von Neumann, 1928)

In every zero-sum game there exists a pair of strategies that minimize
the maximum losses of both players simultaneously.
I.e. Every zero-sum game has a Nash equilibrium.

There is an efficient algorithm to find a Nash equilibrium by solving
the associated linear program.



PPAD completeness

The computational complexity of Nash equilibria for non-zero-sum
games was (partially) resolved only recently:

Theorem (Daskalakis-Goldberg-Papadimitriou,
Chen-Deng, 2006)

The problem of computing a Nash equilibrium is PPAD-complete.

PPAD is a class of problems that

always have a solution.

A solution can be found by a path-following algorithm. The catch
is that the path may have exponential length!

Typical problems in this computational class:

Brower’s fixed-point theorem

Sperner’s lemma
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Brower’s fixed point theorem

Theorem (Brower, 1909)

Every continuous map of a compact convex body to itself has a fixed
point, i.e. x such that f(x) = x.



Sperner’s lemma

Fix a triangulation of a triangle (or
simplex in higher dimensions)

Assign colors 1, 2, 3 to its nodes in an
arbitrary way except that

corners get distinct colors
each side gets only the two colors of
its corners

Lemma (Sperner)

Every properly colored triangulation has a
tri-chromatic triangle.
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Convergence issues

Consider a finite game that is played repeatedly

Best response dynamics: each player plays best response (to
empirical distribution).

Since computing Nash equilibria appears to be a hard
computational problem, this process either does not converge or
converges slowly.

It is computationally hard to predict Nash (best-response)
dynamics

If your laptop can’t find it, neither can the market.
Kamal Jain



Convergence issues - El Farol Bar

The El Farol Bar game: A finite set of
players want to go to El Farol Bar

If less than 60% of the population go
to the bar, they’ll all have a better
time than if they stayed at home.

If more than 60% of the population
go to the bar, they’ll all have a worse
time than if they stayed at home.

This is a simple congestion game.

It has many pure asymmetric Nash equilibria, but

no symmetric pure equilibrium.

What are the best-response (myopic) dynamics of such games?
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