Double Parton Scattering

Aneesh Manohar
University of California, San Diego
28 Jan 2014 / LBNL

Outline

- Qualitative picture of double parton scattering
- DPDFs
- Flavor, spin and color correlations
- Bag model estimates
avoid technical details.

References

- AM and W. J. Waalewijn

```
arXiv:1202.3794 [hep-ph]
arXiv:1202.5034 [hep-ph]
```

- M. Diehl, D. Ostermeier, and A. Schäfer arXiv:1111.0910 [hep-ph]
- Previous Work
- Politzer
- Paver and Treleani
- Mekhfi
- Berger, Jackson, Quackenbush, Shaughnessy
- Kirschner, Shelest, Snigirev, Zinovev
- Gaunt and Stirling

Drell-Yan: Single Parton Scattering (SPS)

$$
\begin{aligned}
\text { Drell-Yan: } & p_{1} p_{2} \rightarrow \ell^{+} \ell^{-} \\
W \text { production : } & p_{1} p_{2} \rightarrow W \rightarrow \ell \nu
\end{aligned}
$$

$$
\mathbf{p}_{\perp}\left(\mu^{+}\right)=-\mathbf{p}_{\perp}\left(\mu^{-}\right)
$$

There can be a longitudinal boost of the dilepton system

PDFs

$M^{2}=s x_{1} x_{2} \quad$ and $\quad e^{2 Y}=x_{1} / x_{2} \quad$ can measure x_{1} and x_{2}

single PDF (sPDF) for each beam particle.

$$
\begin{gathered}
\frac{\mathrm{d} \sigma^{\mathrm{SPS}}}{\mathrm{~d} x_{1} \mathrm{~d} x_{2}}=\frac{\hat{\sigma}_{0}}{x_{1} x_{2}}\left[f_{q}\left(x_{1}\right) f_{\bar{q}}\left(x_{2}\right)+f_{\bar{q}}\left(x_{1}\right) f_{q}\left(x_{2}\right)\right] \\
\hat{\sigma}_{0}=\frac{4 \pi \alpha^{2} \mathcal{Q}_{q}^{2}}{3 N_{c} Q^{2}}
\end{gathered}
$$

Factorization of the cross section.

PDFs

PDFs are non-perturbative quantities.
Determine them from experiment - Since they are universal, they can be measured in DIS and used in Drell-Yan, W production, etc.

Various models (bag model, etc.) have been used to compute PDFs.
Difficult to compute on the lattice because they are light-cone correlation functions.

Double Parton Scattering (DPS)

Double Drell-Yan: $\quad p_{1} p_{2} \rightarrow \ell^{+} \ell^{-} \ell^{+} \ell^{-}$
$W W$ production : $\quad p_{1} p_{2} \rightarrow W^{+} W^{+} \rightarrow \ell \nu \ell \nu$

2 simultaneous hard interactions.
[Not pile-up: next page]

$$
\begin{aligned}
& \mathbf{p}_{\perp}\left(\mu^{+}\right)=-\mathbf{p}_{\perp}\left(\mu^{-}\right) \\
& \mathbf{p}_{\perp}\left(e^{+}\right)=-\mathbf{p}_{\perp}\left(e^{-}\right)
\end{aligned}
$$

4 lepton final state from single parton scattering only has total $p_{\perp} \equiv 0$.

CMS event

Qualitative Picture

Hadrons longitudinally contracted by $\gamma \sim 4000$ at LHC longitudinal size $1 /\left(\gamma \Lambda_{\mathrm{QCD}}\right) \sim 1 / Q$.
Transverse size $1 / \Lambda_{\mathrm{QCD}}$.
Incoming parton flux $\propto \Lambda_{\mathrm{QCD}}^{2}$ (inversely proportional to transverse area)

Spacetime view of Scattering

Two hard interactions can be separated by $1 / \Lambda_{\mathrm{QCD}}$ in \mathbf{z}_{\perp}

Two partons need to be within area $1 / Q^{2}$ of each other to interact. Probability to collide $\Lambda_{\mathrm{QCD}}^{2} / Q^{2}$
single collision : $\frac{\Lambda_{\mathrm{QCD}}^{2}}{Q^{2}} \frac{1}{\Lambda_{\mathrm{QCD}}^{2}} \quad$ double collision : $\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{Q^{2}}\right)^{2} \frac{1}{\Lambda_{\mathrm{QCD}}^{2}}$
DPS is Higher Twist: $\Lambda_{\mathrm{QCD}}^{2} / Q^{2}$ suppressed (Politzer)

Rates

Rate is small

$$
\frac{\sigma(p p \rightarrow W W: \mathrm{DPS})}{\sigma(p p \rightarrow W)} \sim \frac{\Lambda_{\mathrm{QCD}}^{2}}{M_{W}^{2}} \sim 10^{-6}
$$

But we are comparing to big cross-sections at the LHC
DPS gives some interesting signatures

- $u \bar{d} u \bar{d} \rightarrow W^{+} W^{+}$same sign diboson and dilepton production background to searches for new physics
- Already seen in same sign dilepton searches by CMS
- Also measured by ATLAS

Estimate of Rate

Del Fabbro, Treleani; Hussein; Berger, Jackson, Shaughnessy
Badurin, Golovanov, Skachkov [1011.2186]
light Higgs searches in $p p \rightarrow W H \rightarrow \ell \nu b \bar{b}$

Ratio of $H W$ rate to the DPS background in the $\ell \nu b \bar{b}$ channel.

dPDFs

can measure 4 momentum fractions: x_{1} collides with x_{3} and x_{2} with x_{4}

$$
M_{1}^{2}=s x_{1} x_{3}, \quad e^{2 Y_{1}}=x_{1} / x_{3}, \quad M_{2}^{2}=s x_{2} x_{4}, \quad e^{2 Y_{2}}=x_{2} / x_{4}
$$

$$
\frac{\mathrm{d} \sigma^{\mathrm{DPS}}}{\mathrm{~d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} x_{3} \mathrm{~d} x_{4}} \sim \hat{\sigma}_{0}^{2} \int \mathrm{~d}^{2} \mathbf{z}_{\perp} F\left(x_{1}, x_{2}, \mathbf{z}_{\perp}\right) F\left(x_{3}, x_{4}, \mathbf{z}_{\perp}\right) .
$$

Described by double parton distribution functions (dPDFs)

Overlap with SPS

Double Drell-Yan or $W+2$ jets

single parton scattering

double parton scattering

- Drell-Yan rate: $\sigma_{0} \sim \alpha^{2} / Q^{2}$
- SPS Double Drell-Yan rate: $[\alpha /(4 \pi)]^{2} \sigma_{0}$
- DPS Double Drell-Yan rate: $\left(\sigma_{0} \Lambda_{\mathrm{QCD}}^{2}\right) \sigma_{0}$
- radiative corrections vs power corrections: $\alpha /(4 \pi)$ vs $\Lambda_{\mathrm{QCD}}^{2} / Q^{2}$

- DPS: the lepton pairs have to have opposite \mathbf{p}_{\perp}
- SPS: can have acoplanar leptons of the same type

$$
\Delta_{\mathrm{jets}}=\left|\vec{p}_{1, T}+\vec{p}_{2, T}\right| \quad \Delta_{\text {jets }}^{\text {normalized }}=\frac{\left|\vec{p}_{1, T}+\vec{p}_{2, T}\right|}{\left|\vec{p}_{1, T}\right|+\left|\vec{p}_{2, T}\right|}
$$

- DPS enchanced near $\Delta_{\text {jets }}=0$
- SPS in $\Delta_{\text {jets }} \sim \Lambda_{\mathrm{QCD}}$ region $\Lambda_{\mathrm{QCD}}^{2} / Q^{2}$ suppressed by phase space cut. Same size as DPS.
- total rate $=$ SPS + DPS cannot be separated

Interesting DPS process: Same sign $W^{+} W^{+}$

$W^{+} W^{+}$: charge 2 cannot be produced from $q \bar{q}$
$u \bar{d} \rightarrow W^{+} W^{+} \bar{u} d$

- SPS contribution, but with two extra jets in the final state.
- SPS has an extra $\left[\alpha_{s} /(4 \pi)\right]^{2}$ suppression
- DPS dominates in $\Delta_{\text {jets }} \sim \Lambda_{\mathrm{QCD}}$ region

DPS has been observed at the LHC

[ATLAS-CONF-2011-160]

- $p p \rightarrow W+2$ jets with $p_{T}^{\text {jet,lepton }}>20 \mathrm{GeV}$
- $\Delta_{\text {jets }}=\left|\vec{p}_{1, T}+\vec{p}_{2, T}\right|$
- Fit to shape of SPS and DPS from Monte Carlo
- Find the fraction of DPS events is $f_{\text {DPS }}=16 \%$
- DPS observed in $33 \mathrm{pb}^{-1}$ of data

PDF definition

Parton distribution functions (PDF):

$$
f(x)=\int \frac{\mathrm{d} z^{+}}{4 \pi} e^{-i x p^{-} z^{+} / 2}\langle p| \bar{\psi}\left(z^{+}\right) \frac{\hbar}{2} \psi(0)|p\rangle
$$

Light-cone fourier transform of two-point function.

dPDF definition

Given in terms of double parton distribution functions (dPDF)

$$
F\left(x_{1}, x_{2}, \mathbf{z}_{\perp}\right)
$$

for example:

$$
\begin{aligned}
& F_{q q}^{1}\left(x_{1}, x_{2}, \mathbf{z}_{\perp}\right)=-4 \pi p^{-} \int \frac{\mathrm{d} z_{1}^{+}}{4 \pi} \frac{\mathrm{~d} z_{2}^{+}}{4 \pi} \frac{\mathrm{~d} z_{3}^{+}}{4 \pi} e^{-i x_{1} p^{-} z_{1}^{+} / 2} e^{-i x_{2} p^{-} z_{2}^{+} / 2} e^{i x_{1} p^{-} z_{3}^{+} / 2} \\
& \langle p|\left\{\overline{\mathcal{T}}\left[\bar{\psi}\left(z_{1}^{+}, 0, \mathbf{z}_{\perp}\right) \Gamma_{1} T_{1}\right]_{a}\left[\bar{\psi}\left(z_{2}^{+}, 0,0_{\perp}\right) \Gamma_{2} T_{2}\right]_{b}\right\} \mathcal{T}\left\{\psi_{a}\left(z_{3}^{+}, 0, \mathbf{z}_{\perp}\right) \psi_{b}(0)\right\}|p\rangle
\end{aligned}
$$

Like a PDF at $\mathbf{0}_{\perp}$ and one at \mathbf{z}_{\perp}.
Annihilate quarks at 0 and \mathbf{z}_{\perp} and put them back some distance along the light cone.

$$
\frac{\mathrm{d} \sigma^{\mathrm{DPS}}}{\mathrm{~d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} x_{3} \mathrm{~d} x_{4}} \sim \hat{\sigma}_{0}^{2} \int \mathrm{~d}^{2} \mathbf{z}_{\perp} F\left(x_{1}, x_{2}, \mathbf{z}_{\perp}\right) F\left(x_{3}, x_{4}, \mathbf{z}_{\perp}\right)
$$

- dPDF is probability for simultaneously finding two partons
- with momentum fractions x_{1}, x_{2}
- transverse separation \mathbf{z}_{\perp} (or momentum \mathbf{k}_{\perp})
- flavor, spin and color correlations to be discussed

PDF

$$
f(x) \propto\langle p| \bar{\psi}\left(z^{+}\right)\ulcorner T \psi(0)|p\rangle
$$

- $T=1$ for color singlet
- $\Gamma=\hbar$: unpolarized distribution $q(x)$
- $\Gamma=\hbar \gamma_{5}$: polarized distribution $\Delta q(x)$ needs a longitudinally polarized beam
- $\Gamma=i \sigma_{\perp}^{\bar{n} i} \gamma_{5}$: transversity distribution $h_{1}(x), \delta q(x)$ needs a transversely polarized beam

dPDF

$$
\propto \bar{\psi} \Gamma_{1} T_{1} \psi \bar{\psi} \Gamma_{2} T_{2} \psi
$$

- $1 \otimes 1$ and $T \otimes T$: color correlations
- $\Gamma \otimes \Gamma$: spin correlations even for unpolarized target
- $q q, \Delta q \Delta q, \delta q \delta q$
e.g. $u d\left(x_{1}, x_{2}, k_{\perp}\right), \Delta u \Delta d\left(x_{1}, x_{2}, k_{\perp}\right)$, etc.

Flavor, Spin and Color Correlations

- uu vs ud vs dd measures flavor correlations e.g. $p=u u d$, so $d d$ should be suppressed relative to $u u$ and $u d$
- $\Delta q \Delta q$ measures longitudinal spin correlations
e.g. $u \uparrow$ with $u \uparrow$ vs $u \downarrow$
- $\delta q \delta q$ measures transverse spin correlations
- F^{1} has $1 \otimes 1$ color structure, and F^{8} has $T \otimes T$ color structure measure diparton color correlations
Can measure if diquarks are in a color $\mathbf{6}$ or $\overline{3}$
Can measure if $q \bar{q}$ are in a color 1 or 8

QCD Analysis

- Have a systematic QCD formulation
- Precise operator definition of dPDFs in QCD
- Flavor, Spin, Color and Interference effects
- Soft functions
- Can calculate evolution (analogous to Altarelli-Parisi)
- Can compute radiative corrections (loop corrections)
rapidity divergences need to be regulated for the $T \otimes T$ dPDFs which exchange color.
[Chiu, Jain, Neill, Rothstein, 1104.0881 , 1202.0814]

How do you measure them?

Short answer: the same way PDFs were measured
Much more difficult, since many more DPDFs, and the cross-section is smaller.

Can disentangle the pieces by looking at angular dependence.
Look at double Drell-Yan and compare γ^{*} vs Z^{*} vs W^{*}.

What has been done?

[Paver, Treleani]

$$
\mathrm{d} \sigma=\int \mathrm{d}^{2} \mathbf{z}_{\perp} \sum_{i j k l} F_{i j}\left(x_{1}, x_{2}, \mathbf{z}_{\perp}\right) F_{k l}\left(x_{3}, x_{4}, \mathbf{z}_{\perp}\right) \hat{\sigma}_{i k}\left(x_{1} x_{3} s\right) \hat{\sigma}_{j l}\left(x_{2} x_{4} s\right)
$$

- Commonly used assumptions
- x_{i} and \mathbf{k}_{\perp} uncorrelated: $F\left(x_{1}, x_{2}, \mathbf{k}_{\perp}\right)=F\left(x_{1}, x_{2}\right) \widetilde{F}\left(\mathbf{k}_{\perp}\right)$
- uncorrelated partons $F\left(x_{1}, x_{2}\right)=f\left(x_{1}\right) f\left(x_{2}\right)$
- neglect color or spin correlations

$$
\begin{aligned}
\frac{\mathrm{d} \sigma^{\mathrm{DPS}}}{\mathrm{~d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} x_{3} \mathrm{~d} x_{4}} & \sim \frac{1}{\sigma_{\text {eff }}} \frac{\mathrm{d} \sigma^{\mathrm{SPS}}}{\mathrm{~d} x_{1} \mathrm{~d} x_{3}} \frac{\mathrm{~d} \sigma^{\mathrm{SPS}}}{\mathrm{~d} x_{2} x_{4}} \\
\frac{1}{\sigma_{\text {eff }}} & =\int \mathrm{d}^{2} \mathbf{k}_{\perp} \widetilde{F}\left(\mathbf{k}_{\perp}\right)^{2} \sim \Lambda_{\mathrm{QCD}}^{2}
\end{aligned}
$$

- experimentally $\sigma_{\text {eff }} \sim 1-15 \mathrm{mb}$

Bag Model

Gives a rough idea of DPDFs.
First look at regular sPDF:

Often taken as input PDF at a low scale $\mu \sim 1-2 \mathrm{GeV}$, and then evolved using DGLAP.

$k_{\perp}-x$ Correlation

$k_{\perp}-x$ Correlation

Weak k_{\perp} correlation with $x, F\left(x_{1}, x_{2}, k_{\perp}\right) \approx F\left(x_{1}, x_{2}\right) \widetilde{F}\left(k_{p} \operatorname{erp}\right)$.

$x_{1}-x_{2}$ Correlation

Strong correlation between x_{1} and $x_{2} . F\left(x_{1}, x_{2}\right) \neq f\left(x_{1}\right) f\left(x_{2}\right)$.

$x_{1}-x_{2}$ Correlation

If x_{1} is big, x_{2} is small, as one might expect.

Spin Correlations

The spin-correlations are not small.

Conclusions

- DPS already measured at the LHC
- Relevant for some important searches
- Consistent formalism including radiative corrections
- dPDFs have to eventually be extracted from data
- similar to Drell-Yan or DIS
- start with models
- models for PDFs eventually replaced by those extracted from data
- Can be used to study quark flavor, spin and color correlations.

