Some New Applications of Jet Substructure

Brock Tweedie
PITT PACC, University of Pittsburgh
@ ATLAS Searches Workshop
28 January 2014

Goals

- Show that direct RPV stop-pair → 4j search is viable
- Show tricks to measure boosted hadronic top spin

Baryon # Violating Stop LSP

- Baryonic R-parity violation
 - $-\lambda''_{3ij} \tilde{t}_R d_R^i d_R^j (i \neq j)$
- 100% decays to 2 down-type quarks
 - prompt if λ " > 10^{-7}
 - MFV: 96% bottom + down/strange
- Direct pair production ⇒ fully jetty final-state
 - no handles like leptons or MET

Pursuing Direct Production

- Minimal model-dependence
 - rate/kinematics depend only on mass
 - inclusive analysis ignores jet flavor (structure of λ")
 - not necessarily SUSY (generic triplet diquark)
 - but still assuming prompt decays
- Benchmark for QCD pair-produced NP searches
 - minimal color, spin, # decay products, flavor
- Current limits are weak (less than m_{top}!)
 - LEP: 90 GeV
 - Tevatron: 100 GeV
 - LHC: No limit!

Trigger Creep at the LHC

Why Jet Substructure?

- Focus on high-p_T "boosted" signal production
 - less combinatoric ambiguity
 - better S/B
- Flexible partition of decay radiation to individual "quarks"
 - better rejection of pileup, etc
 - better mass resolution
- Nearly scale-free procedure
 - bypass "4-jet" division of phase space, 4j trigger thresholds
 - background processed into "featureless" spectrum

Basic Ingredients

- Jet-H_T trigger: offline H_T > 900
- Pre-trim event to remove pileup
 - Fixed minijet p_T threshold, tuned to remove ⟨N_{PV}⟩ ~ 20
- Capture stop decays in R ~ π/2 fat-jets
 - maximize mass reach, minimize steepness of BG
- Decluster into subjets using BDRS-like prescription
 - relative-p⊤ measure
 - extra demand on m/p_T of softer cluster
- Impose kinematic cuts, run a bump-hunt over (m₁+m₂)/2

Example Event, m(stop) = 100

* 0.1 x 0.1 "calorimeter"

Cut Flow (Untagged)

* 8 TeV 20/fb

Average-Mass Spectra

QCD Estimation 4-Ways

Smooth function fit (CMS style)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}m_{\mathrm{avg}}} = \frac{P_0(1 - m_{\mathrm{avg}}/\sqrt{s})^{P_1}}{(m_{\mathrm{avg}}/\sqrt{s})^{P_2 + P_3\ln(m_{\mathrm{avg}}/\sqrt{s})}} \quad \text{(+ signal bump)}$$

- ABCD (ATLAS style)
 - control regions defined in asym and CM angle
 - signal-region spectrum derived bin-by-bin
- Asymmetry sideband
 - primitive 2D fit over m_{avg} and asym (⇔ m₁m₂-plane)
- Jet-mass template
 - derive m_{avg} spectrum from spectra of individual fat-jets
 - control region with ~infinite statistics

2012 Sensitivities, Inclusive

* $\Delta \chi^2$ discriminator, Statistical errors ONLY

2012 Sensitivities, b-Tagged

discover ~250 GeV

exclude 350~400 GeV

^{*} $\Delta \chi^2$ discriminator, Statistical errors ONLY (*Not* re-optimized for b-tag)

Summary (RPV Stops)

- LHC is sensitive to stop pair-production even when the stop is light and promptly decays to jets
 - trigger on H_T, substructure event reconstruction
 - inclusive m~100 GeV signal may be discoverable at 8 TeV
 - (similar conclusion at 7 TeV with looser triggers)
 - inclusive exclusion up to 300 GeV
 - b-tagged MFV exclusion (discovery) ~ 250 (400)
 - continues to work at LHC14 ($H_T \sim 1500$), mass reach roughly doubles

 $Q^{\alpha}[stop] = [top]^{\alpha}$

Why Measure Top Quark Spin?

- Characterize new particle production
 - stops (RPC) & other top-partners
 - top-antitop resonances
- Scan continuum for new interactions
 - broad resonances
 - higher-dimension operators
 (4-quark contact, color-dipoles)
- Test weak decay

Analyzing the Spin...

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta} = \frac{1}{2} \left(1 + 1.0 \cos\theta \right)$$

Analyzing the Spin...With Jets

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta} = \frac{1}{2} \left(1 + -0.4 \cos\theta \right)$$

Analyzing the Spin...With Jets

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta} = \frac{1}{2} \left(1 + \mathbf{0.5} \cos\theta \right)$$

The Optimal Hadronic Spin Analyzer

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta} = \frac{1}{2} \left(1 + \mathbf{0.64} \, \cos\theta \, \right)$$

Case Study: Boosted Tops

- 2.5 TeV spin-1 octet resonance
 - introduce different vector/axial mixtures
 - I+jets channel
- p_T(top) ~ 1 TeV
- R = 1.2 C/A fat-jets
- HEPTopTagger or JHU top-tagger
 - default and modified algorithms

Default vs Modified (Loose Cuts)

JHU

HEP

particle-level perfect b-tag no pileup

Suggested Modifications

HEP

- eliminate mass-drop criterion
- consider only hardest 4 subjets
- do not filter, do not recluster

JHU

- eliminate δ_r parameter
- if 4 subjets, undo smaller-mass stage-two declustering
- also consider HEP-like "best top" combination of 3 subjets

Efficiencies and analyzing powers both *improve* 10~25% With basic mass-windows, final efficiencies 70~80%

Performance (Modified HEP)

	(optimistic)			(pessimistic)			
	Particle-Level			Calorimeter-Level			
Spin Analyzer	b-tag	binary W	$\sum W$	b-tag	binary W	$\sum W$	parton-level
optimal hadronic	0.565	0.471	0.489	0.529	0.400	0.425	0.64
soft-quark	0.442	0.430	0.430	0.411	0.385	0.385	0.50
b-quark	0.400	0.272	0.345	0.390	0.217	0.319	0.40
lepton		0.870			0.834		1.00

* Effective analyzing powers

Summary (Top Spin)

- An optimal hadronic spin analyzer exists...you should use it
 - power = 0.64 at parton-level (next-best option 0.5)
 - relative improvement can survive reconstruction
 - some kind of b-tag is very helpful
- Existing jet substructure methods aren't necessarily optimized to preserve spin information
 - small algorithm modifications, looser internal cuts improve total efficiency and reduce bias
 - keeping (relative) p_T cuts low would be ideal

More...

AR Distributions

*Passing all analysis cuts

Performance of "Data-Driven" QCD Estimators

^{*} Error bars are MC statistics (effective lumi ~ 20/fb)

Smaller Fat-Jets?

- ~2x steeper background
- 100 GeV signal acceptance up 30%, with slightly smaller S/B and slightly larger S/√B
- Higher-mass stop acceptances radically degrade

Vs BDRS

Takeaway points

- Traditional filtering is a bad idea (introduces mass scales via maximum R=0.3 for subjets)
- Otherwise, the major difference w.r.t. BDRS is that our subjet m/p_T
 criterion gives more consistent slope and suppresses the tail
- Unfiltered BDRS mass-asymmetry control region becomes less reliable; ABCD still looks okay; shape is trickier with default formula; 1j template, not sure...

Matched Vs Unmatched QCD

^{*} Both approaches show good agreement with traditional 4j analysis

Lessons on Signal Showering

p_T(stop1+stop2)

Optimal Analyzer Vs...

