

Substructure at ATLAS

Berkeley Search Workshop 2014

Maximilian Swiatlowski

27 January, 2014

M. Swiatlowski Substructure at ATLAS 27 January, 2014 1/36

The Challenges of Jet Substructure

- Jet substructure is a huge opportunity for searches at the LHC
 - We have available an entirely new class of observables compared to the Tevatron!
- Many reasons to consider substructure when looking for new physics
 - Signals are often boosted— standard techniques can break down!
 - ② Detectors have incredibile granularity and resolution— small structure is easier to resolve!
 - **3 New physics is hiding** need as many handles as we can get!

The Challenges of Jet Substructure

- But with great opportunity, come great challenges
- ATLAS has been spent the past 3+ years trying to address these challenges, and this talk will be structured around them:
 - Understanding the theory landscape
 - 2 Dealing with pileup
 - 3 Testing methods in data
 - Actually applying substructure to searches
- Not going to go into great detail on the methods, but feel free to ask!

Understanding the Theory Landscape

4 / 36

The Theory Landscape

5 / 36

• From an experimental perspective...

- How can you process all of these ideas?
- How do you begin to tell what's useful?

M. Swiatlowski Substructure at ATLAS 27 January, 2014

Processing New Ideas

- Substructure as we know it began in 2008– the seminal BDRS paper
 - A new idea at the time: use Zh and Wh production at high boson p_T and merged Higgs-jets to search for $h \to b\bar{b}$
 - This field began because of a new idea for a search!
- First ATLAS results (with data) on similar large-R jets: May 2011
 - Not a bad turn around, given we had to start running a detector!
 - But three years is still a long time...

M. Swiatlowski Substructure at ATLAS 27 January, 2014 6

Current Processing Time: Q-jets

 More recent example: look at Q-jets (multiple re-interpretations of one jet):

- Went from theory paper (June 2012) to experimental result (August 2013) in about one year
- Much faster turn-around time for trying new ideas!

M. Swiatlowski Substructure at ATLAS 27 January, 2014 7 / 36

How Do We Get Fast Results?

- Many factors contribute to our ability to study new algorithms and ideas quickly
 - Well understood data samples: especially boosted W-jets, top jets, QCD jets
 - 2 Existing code infrastructure means less time spent on "basics"
 - The collaboration is much more comfortable with new ideas because of the success of previous studies

8 / 36

How Do You Choose?

- Being able to study new algorithms quickly is great! But we do not study them just for their own sake...
 - Importantly, need to compare performance of all these ideas
- New ideas and improved performance are great, but there is a need for stability and consistency so that searches can actually use these techniques

 Study Q-jets in detail, but we see it performs the same as older techniques (n-subjettiness)

How Do You Choose: Top Tagging

- Theory results suggest that n-Subjettiness and HEP Top Tagger are best: also seen in ATLAS
- But important to note that peformance changes with efficiency
 - Some final states might require higher efficiency, and a different tagger!

M. Swiatlowski Substructure at ATLAS 27 January, 2014 10 / 36

Understanding the Theory Landscape

- New ideas are constantly emerging, and ATLAS is constantly implementing them
 - Turn-around on new ideas is a year or less, oftentimes
 - Dialogue with theorists has been extremely productive for everyone
- We are beginning to understand what works best: but we tread carefully, as this is final state dependent
- · What is missing?
 - No public ATLAS or CMS results on boosted Higgs!
 - Hard to pin down exactly why... not enough cross-section? Need new techniques? Backgrounds too difficult?

M. Swiatlowski Substructure at ATLAS 27 January, 2014 11/36

Pileup

Pileup is a Concern

- Using large-R jets means we are very suspectible to extra radiation
 - Which is a shame, because the LHC plans to throw a lot of radiation at us
- Even in 2011 conditions, see a large dependence of mass on pileup
- How can we hope to do physics in these conditions?

Area Corrections and Grooming are Magic

- Areas correction: measures susceptibility of jets to radiation by measuring ambient energy in events
- Trimming: remove soft subjets from large-R jets
- Even with 200 interactions, these two techniques restore the jet mass spectrum

M. Swiatlowski Substructure at ATLAS 27 January, 2014 14/36

What About Jet Shapes?

- Can easily extend the areas correction to work for jet shapes
- Corrected distributions show no slope vs. more interactions
- We can use the same technology to correct for many other shapes as well (and even event-shapes!)

Are We Still Worried About Pileup?

- The answer is both yes and no:
 - **Yes!** We do not know if the MC is correct! Low p_T jets have problems!
 - **No!** The MC has not lied yet, and 2012 results are good! Substructure does not really care about low p_T !
- For now, it seems like jet substructure observables will survive to very high pileup conditions
 - Other elements of searches, like E_T^{miss} , may not!
 - Validation of these techniques will be critical in 2015

Comparing Data/MC

Validating Substructure

- Much of ATLAS's efforts with substructure so far have been towards validation:
 - Understanding data/MC agreement
 - Studying performance in different samples
 - Measuring resolution and uncertainties
- The challenge: understand to what extent jet substructure actually works in the data
 - Don't just look at QCD backgrounds, but real signals as well

Validating Mass

- First thing to understand: in a well known sample, how accurate is our modeling of the jet mass?
 - The simplest jet substructure observable...
- Can use a clean sample of W-jets to measure how well data and MC agree– use this to derive uncertainties

Jet Mass (with Trimming)

- Can see a beautiful top peak in the top sample: spectrum is very well modeled
- Lots of variation in MC for QCD: Powheg and Herwig++ do best

HEP Top Tagger: Very High Purity

- Trimming and n-subjettiness often used in semi-leptonic searches: need high signal efficiency
- But what about all-hadronic searches where you need high signal purity?
- HEP Top Tagger provides a much cleaner sample, and is also very well modeled

Template Methods in Quark-Gluon Tagging

 Significant data/MC disagreement for variables sensitive to quark/gluon tagging required the use of a data-driven templates

- Take percentages from MC, measure $\gamma+$ jet and dijet in data: solve for quark and gluon distributions in data
 - More information on method in backup

M. Swiatlowski Substructure at ATLAS 27 January, 2014 22 / 36

Templates with Data

- Data **disagrees with Pythia** in n_{trk} , leading to worse separation than expected
- Track Width has better agreement, though not good at high p_T

M. Swiatlowski Substructure at ATLAS 27 January, 2014 23 / 36

Validating Substructure

- In top and W measurements, remarkable agreement between data and MC
 - In both QCD and signal samples!
- Quark/gluon tagging has more trouble: gluon properties in particular are not well modeled
 - Need to help theorists understand these issues!
- Has the challenge been met?
 - W and top samples used as much as possible to understand "real" substructure
 - But the p_T spectrum is very limited- not related to **real signals**
 - Where else is it interesting to measure structure?

Searches

Searches: Actually Using Substructure

- Now that we understand the tools, we should actually be using these in searches
 - Recall: the entire field is motivated by a search (BDRS and Higgs)
- ATLAS has a number of analyses that apply our techniques

tt̄ Resonances

- One of the canonicial searches utilizing substructure
 - High mass Z' decays to high p_T top quarks: too boosted for a resolved analysis to see
 - Reconstruct Z' mass with semi-leptonic and hadronic top candidates

tt Resonances: Limits

- Search utilizes very high p_T top quarks: how well do we understand large-R jets, especially mass, here?
 - Validation regions are at lower p_T
- Limits are significanctly better than a resolved analysis would be!

Dark Matter with Substructure

- Another search with substructure at the very heart: look for dark matter produced in association with ISR W-jet
 - Semi-leptonic and resolved jets have huge backgrounds! Go to very high p_T to avoid backgrounds: requires substructure

Mono-W Limits

- Set limits on effective theory mass scale as a function of dark matter mass
- Making some assumptions on the effective operators of dark matter, can even show limits compared to direct-detection experiments

Total Jet Mass in SUSY

- A completely different approach: high multiplicity SUSY final state, lots of jets and E_T^{miss}
- Large jets here may not coincide with tops or gluinos: but summing their mass is sensitive
- This signal region is not the most effective at the end, but may be useful for 13 TeV

The Potential For Searches

- So far, not too many searches have utilized substructure!
 - Many more are planned: direct stop, RPV SUSY multijets, $W' \to tb$, $W' \to WZ$, exotic 4 top models, etc.
- What is preventing analyses from being released?
 - Access to information: SUSY multijets had to use "composite" jets, because R=1.0 jets were not available
 - More handles for optimization: New observables mean more room for optimization, which takes time
 - Analyzers need to help with performance: A smaller set of users means uncertainties, etc., require more work to derive
 - This is not low hanging fruit: The simple analyses have already been done, so all that's left is the fun stuff:-)
- What existing searches would benefit from substructure?

Conclusions

Summary

- Substructure is a new opportunity for searches at the LHC
- ATLAS has been working to test new techniques, measure performance, and study data/MC agreement
 - These techniques are no longer "experimental": they are commissioned and well understood!
- Data/MC agreement is, in general, remarkably good
 - Large samples of boosted W and top jets make validation straightforward
 - Notably, quark/gluon discrimination does not work as well as expected
 - The one island of significant disagreement?
- Techniques are already used in many searches, but even more are in progress
- 13 TeV will make boosted objects **even more important**: looking forward to new developments!

Thank You For Your Attention!

Backup

Extracting Templates

- Goal: to better understand quark/gluon shapes in data, extrapolate data to 100% purity with fractions from MC
- Ideally, solve for q/g on bin-per-bin basis from:

$$h^{\gamma+j}=P_Q^{\gamma+j}q+P_G^{\gamma+j}g$$
 $p_Q=percentage\ quark$ $p_Q=percentage\ quar$

But, need to account for b and c fractions (for now, taken from MC):

$$\begin{array}{ll} h^{\gamma+jet} &= P_Q^{\gamma+jet} q + P_G^{\gamma+jet} g + P_B^{\gamma+jet} b + P_C^{\gamma+jet} c \\ h^{dijet} &= P_Q^{dijet} q + P_G^{dijet} g + P_B^{dijet} b + P_C^{dijet} c \end{array} \qquad \begin{array}{ll} \text{From Data} \\ \text{From MC} \\ \text{Solving for This} \end{array}$$

 Then, compare pure data shapes to pure MC shapes (used for training tagger)

Testing Method in MC

- \bullet MC-labeled distributions in $\gamma+{
 m jet}$ and dijets agree very well with templates derived in MC
 - Disagreement at low p_T will be discussed at length soon
- Gives us confidence that the algorithm is doing something sensible