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What are higher-order generators?

I NLO is the first order at which rates and
associated theoretical uncertainties are reliably
predicted.

I NLO and NNLO gives non-negligible
contributions in several cases (e.g.
gg → H ≈ 100% at NLO and ≈ 30% at NNLO).

I Theoretical uncertainties further reduced by
including NLO and NNLO corrections.

[Anastasiou et al., hep-ph/0312266]

I Shapes are generically better described increasing the parton multiplicity: new
channels at NLO, and NNLO, larger K-factors and noticeable shape distorsions.

I Fixed-order results are only at the parton level. No immediate way to estimate
detector effects. Singular regions are poorly described.

I Resummation improve sing. region but requires to define the observable in
advance, no fully-exclusive events.

I Higher-order generators are tools that aim to incorporate all these effects in a
consistent way. Examples:

MC@NLO, POWHEG, SHERPA, Geneva, Herwig++, Vincia . . .
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Which one to use?

I It strongly depends on the obervable under study !
I Multijet shapes are usually ok with CKKW/MLM. Large scale uncertainties.
I Normalizations are given better in NLO+PS, but spectrum is still LO only.

If normalized, one looses the need for NLO.
I For studying pure shower effects, just use a standard SMC
I In many cases what we really want is higher order resummation.

I Lesson: always keep in mind limit of validity of each MC
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Estimating theoretical uncertainties

I Monte Carlo event distributions are theoretical predictions!
I They should always be accompanied by theoretical uncertainties. If not,

demand for them!
I Typical procedure for accuracy of generator = accuracy of the observable,

e.g. NLO

Independent µR, µF variations.

PDF error set envelope (PDF4LHC recommendation?)

Matching to a different parton shower(Herwig vs. Pythia), MPI on/off

Caveat: The shower only preserves the total probability. After
acceptance cuts, rates and distributions can change drastically.
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PDF error set envelope (PDF4LHC recommendation?)
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acceptance cuts, rates and distributions can change drastically.

I Machinery do exist for fast reweighting in many MC. Make use of them!
(a)MC@NLO [Frederix et al. 1110.4738] SHERPA [Schonherr et al. 1212.0386]

Sherpa+BlackHat

b

b

b

b

b

b ATLAS data

Eur.Phys.J. C71 (2011) 1763
Sherpa MC@NLO

µR = µF = 1
4 HT , µQ = 1

2 p⊥

µR, µF variation

µQ variation

MPI variation
10 2

10 3

10 4

10 5

10 6

Inclusive jet multiplicity (anti-kt R=0.4)

σ
[p
b
]

b b b b b

2 3 4 5 6

0.5

1

1.5

Njet

M
C
/
d
a
ta

POWHEG-BOX [Nason et al.]

Simone Alioli | LBNL 01/28/2014 | page 4



Estimating theoretical uncertainties

I Monte Carlo event distributions are theoretical predictions!
I They should always be accompanied by theoretical uncertainties. If not,

demand for them!
I Typical procedure for accuracy of generator = accuracy of the observable,

e.g. NLO
Independent µR, µF variations.
PDF error set envelope (PDF4LHC recommendation?)
Matching to a different parton shower(Herwig vs. Pythia), MPI on/off
Caveat: The shower only preserves the total probability. After
acceptance cuts, rates and distributions can change drastically.

I For process which are already divergent at LO, explicit independence on
generation cuts/suppression factors must be enforced. This is not a
theoretical unc.

I For observables that don’t have NLO accuracy, showers effect are more
marked. Different shower starting scales within the same generator can
give very different results.
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Recent developments and new directions

I POWHEG and MC@NLO methods are by now well
established methods for NLO+PS.

I Several implementations by different groups available

POWHEG-BOX, (a)MC@NLO, SHERPA, Herwig++, POWHEL, . . .

I Where to move from here ? Three main directions:

Merge NLO
samples with
different jet

multiplicities.

Increase the
fixed-order

accuracy beyond
NLO.

Improve the
resummation

accuracy beyond
(N)LL of parton

showers.
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Merging NLO Shower Monte Carlo samples

I When merging NLON and NLON+1 samples separated by µcut, the
unphysical dependence shows up as σ≥N ⊂ log(µcut/Q).
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Multiscale Improved NLO.

I MiNLO is CKKW-inspired recipe to set a priori the scales of a NLO
calculation involving multiple scales. [Hamilton et al. 1206.3572]
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POWHEG/MiNLO as a path to NNLO+PS.

I For simple processes (e.g. gg → H), using HNNLO [Catani et al. 0801.3232] for
event-by-event reweighting results in a NNLO+PS
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I Hj-MiNLO NNLO+PS results [Hamilton,Nason,Re,Zanderighi 1309.0017]
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Interplay between NLO QCD and NLO QED corrections

I First examples in single vector boson production

I Two separate implementations for W±:
[Bernaciak, Wackeroth, arXiv:1201.4804]

[Barzé et al., arXiv:1202.0465]

NLO QCD + NLO EW, only 1st QCD emission by POWHEG. Interfaced to QCD
parton shower (PYTHIA / HERWIG). No photon-induced nor multiple photon
radiation.

Simultaneous NLO QCD and QED correction on first emission by POWHEG,
interfaced to QCD (PYTHIA) and QED (PHOTOS) parton showers.
POWHEG-BOX handles quasi-collinear QED radiation from massive legs.
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EW Sudakov logs and weak emissions in PS

I EW logs don’t cancel as QCD, partonic processes are not EW singlets
I Sizeable effects at LHC [1312.3524]

I Huge at future colliders [1308.1430]

I Machinery started for EW showers
in Pythia [1401.5238]

I Interleaved QCD-EW evolution,
matched to QCD and EW ME,
better agreement with data
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I Possible to take advantage of this
for EW-improved ME merging ?
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Interference issues in the SM: single top Wt-channel

I In general, LO QCD + NLO EW must be treated as LO EW + NLO QCD
I In the SM, a prime example is gg →W+bt̄ vs. gg → tt̄→W+bt̄ at NLO

Contributions from doubly resonant seem to spoil perturbative convergence.
DR removes |Mr|2 (±2Re{Mr M∗

nr}). Not gauge invariant (but violations
numerically small)
DS cancels the resonant contribution near the doubly-resonant region in a
(almost) gauge-invariant way |Mr +Mnr|2 − Csub.
The difference is a measure of the interference, provided |Mr|2 − Csub ≈ 0
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Interference issues in the SM: single top Wt-channel

I Recent aMC@NLO calculation provides better approach [Frederix 1311.4893]

I Complete pp→ e+νeµ
−νµbb̄+X at NLO in 4F scheme (mb 6= 0)
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νe
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I Includes SR,DR, and NR contributions, off-shell effects and interferences
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Interference issues in the SM: single top Wt-channel

I Recent aMC@NLO calculation provides better approach [Frederix 1311.4893]

I Complete pp→ e+νeµ
−νµbb̄+X at NLO in 4F scheme (mb 6= 0)

I Includes SR,DR, and NR contributions, off-shell effects and interferences

I Results show moderate NLO corrections and scale unc. (±20− 30%).

I Extremely challenging calculation, NLO only for now. Shower Matching?
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Interference issues beyond the SM: H±t

I Same issue present in H±t
associate production with
m±

H <mt

I Implemented in both POWHEG
and MC@NLO [Klasen et al. 1203.1341]

[Weydert et al. 0912.3430]

I DR vs. DS differences seems
smaller in his case, compared to
doubly resonant contributions
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Interference issues beyond the SM: q̃q̃

I Same effect studied also in squark-squark production [Gavin et al. 1305.4061]

I Interference with q̃g̃ when gluino is resonant
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I Dominant channel in the high mass region

I Inclusive effects small, again more
pronounced in particular distributions
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Heavy quarks in the final state

[Eur.Phys.J.C 71 (2011)] [JHEP 1103:136 (2011)]
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I Inclusive b-jets cross sections in good agreement with MC
I As the two b-jets become closer MC start to show disagreements.

Disagreement grows with pT, where g → bb̄ dominates.
I Use Heavy Quark Fragmenting Jet Functions for simultaneous

resummation of jet resolution and quark mass logs [Bauer, Mereghetti 1312.5605]

I How to include these resummations into a fully exclusive Montecarlo ?
Geneva . . .
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Color coherence

I At Tevatron collinear approx. + angular-ordering provided good modeling
of color-coherence effects.
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Color coherence
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I At Tevatron collinear approx. + angular-ordering provided good modeling
of color-coherence effects.

I Shower Monte Carlo needed to take angular-ordering into account.
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I At Tevatron collinear approx. + angular-ordering provided good modeling
of color-coherence effects.

I Shower Monte Carlo needed to take angular-ordering into account.
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+ CDF data + Powheg-Box jj [SA et al. 1012.3380]

I At Tevatron collinear approx. + angular-ordering provided good modeling
of color-coherence effects.

I Shower Monte Carlo needed to take angular-ordering into account.
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I At Tevatron collinear approx. + angular-ordering provided good modeling
of color-coherence effects.

I Shower Monte Carlo needed to take angular-ordering into account.

I At LHC, general features are still described fairly
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I At Tevatron collinear approx. + angular-ordering provided good modeling
of color-coherence effects.

I Shower Monte Carlo needed to take angular-ordering into account.

I At LHC, general features are still described fairly

I But larger coherence effects start to show up in angular correlation
between 2nd and 3rd jet
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I At Tevatron collinear approx. + angular-ordering provided good modeling
of color-coherence effects.

I Shower Monte Carlo needed to take angular-ordering into account.
I At LHC, general features are still described fairly
I But larger coherence effects start to show up in angular correlation

between 2nd and 3rd jet
I Can we learn something from 3-jets at NLO ? Njet+SHERPA [Badger et al., 1309.6585]
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Jets gap and BFKL dynamics

I Study of effects beyond NLO at large rapidity separations, comparison
between POWHEG+SMC and HEJ [SA et al., 1202.1475]

I Indentified few other observables with larger difference in radiation patterns

[Eur.Phys.J.C 71 (2011) 1795]
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Conclusions and outlook

I Monte Carlo’s have been tested across a wide range of energies
and phase spaces.

I In general, NLO SMC’s are performing remarkably well to describe
LHC data.

I When looking into extreme areas of phase space or in high
multiplicity regions, we start seeing (expected) disagreements.

I NLO+PS automation is now mature and helpful for new analysises.
I Care must still be taken for selected processes: interference

effects, new regimes, BSM physics . . .
I New developments and theoretical ideas are pushing MC forward

in three main directions
Merge NLO sample with different NLO multiplicities.
Increase the fixed-order accuracy beyond NLO.
Increase the resummation accuracy beyond parton showers.

I Many other interesting subjects that have not been covered: MPI,
soft-QCD, MC tunes . . .

Thank you for your attention!
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