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What are higher-order generators?

500 T

NLO is the first order at which rates and
associated theoretical uncertainties are reliably
predicted.

NLO and NNLO gives non-negligible

contributions in several cases (e.g.
g9 — H =~ 100% at NLO and =~ 30% at NNLO).

Theoretical uncertainties further reduced by
including NLO and NNLO corrections.
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[Anastasiou et al., hep-ph/0312266]

Shapes are generically better described increasing the parton multiplicity: new
channels at NLO, and NNLO, larger K-factors and noticeable shape distorsions.
Fixed-order results are only at the parton level. No immediate way to estimate
detector effects. Singular regions are poorly described.
Resummation improve sing. region but requires to define the observable in
advance, no fully-exclusive events.
Higher-order generators are tools that aim to incorporate all these effects in a
consistent way. Examples:

MC@NLO, POWHEG, SHERPA, Geneva, Herwig++, Vincia . ..
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Which one to use?

It strongly depends on the obervable under study !

Multijet shapes are usually ok with CKKW/MLM. Large scale uncertainties.

Normalizations are given better in NLO+PS, but spectrum is still LO only.
If normalized, one looses the need for NLO.

For studying pure shower effects, just use a standard SMC

In many cases what we really want is higher order resummation.
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Which one to use?

It strongly depends on the obervable under study !
Multijet shapes are usually ok with CKKW/MLM. Large scale uncertainties.
Normalizations are given better in NLO+PS, but spectrum is still LO only.
If normalized, one looses the need for NLO.
For studying pure shower effects, just use a standard SMC
In many cases what we really want is higher order resummation.

F 1.8
) Z16E CMS, f5=7TeV, L =5.0 fb*
= P CMS, r 7TeV L= 50fb R (0] 7///. MaDGRa®H stat. uncertainty
Emg E2RAT P Joelv éﬂ
S F e Dam o uu‘-suf“, N
S [ - MADGRAPH s -t
2 L --sHerea =
T p L -pownes (2+1) b
810 E . PYTHIAB (Z2)
5 E
S F
10g e PURHEL e » e
S E|
1= i ;
4 - -"‘-“ it El 14 3
PR ] 1.2 s §
T
104;41:1 s 3 o; fl/ {?*’?W/%/*}J@WW’L;‘M#*Q
T T P T 0.6F
0 0.5 1 15 2 2.5 3 0 0.5 1 15
A¢z,j)lrad) A(szlfa“]

Simone Alioli | LBNL 01/28/2014 | page 3 [l



Which one to use?
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Lesson: always keep in mind limit of validity of each MC
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Estimating theoretical uncertainties

Monte Carlo event distributions are theoretical predictions!
They should always be accompanied by theoretical uncertainties. If not,

demand for them!
Typical procedure for accuracy of generator = accuracy of the observable,
e.g. NLO

e Independent pg, ur variations.
o PDF error set envelope (PDF4LHC recommendation?)

e Matching to a different parton shower(Herwig vs. Pythia), MPI on/off

e Caveat: The shower only preserves the total probability. After
acceptance cuts, rates and distributions can change drastically.
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Estimating theoretical uncertainties

Monte Carlo event distributions are theoretical predictions!
They should always be accompanied by theoretical uncertainties. If not,
demand for them!
Typical procedure for accuracy of generator = accuracy of the observable,
e.g. NLO
e Independent ur, pur variations.
o PDF error set envelope (PDF4LHC recommendation?)
e Matching to a different parton shower(Herwig vs. Pythia), MPI on/off
e Caveat: The shower only preserves the total probability. After
acceptance cuts, rates and distributions can change drastically.

Machinery do exist for fast reweighting in many MC. Make use of them!
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Estimating theoretical uncertainties

Monte Carlo event distributions are theoretical predictions!

They should always be accompanied by theoretical uncertainties. If not,
demand for them!

Typical procedure for accuracy of generator = accuracy of the observable,
e.g. NLO

Independent ur, pr variations.

PDF error set envelope (PDF4LHC recommendation?)

Matching to a different parton shower(Herwig vs. Pythia), MPI on/off
Caveat: The shower only preserves the total probability. After
acceptance cuts, rates and distributions can change drastically.

For process which are already divergent at LO, explicit independence on
generation cuts/suppression factors must be enforced. This is not a
theoretical unc.

For observables that don’'t have NLO accuracy, showers effect are more
marked. Different shower starting scales within the same generator can
give very different results.

Simone Alioli | LBNL 01/28/2014 | page 4 m



Recent developments and new directions

POWHEG and MC@NLO methods are by now well
established methods for NLO+PS.

Several implementations by different groups available
POWHEG-BOX, (a)MC@NLO, SHERPA, Herwig++, POWHEL, ...

Where to move from here ? Three main directions:

Merge NLO Increase the Improve the
samples with fixed-order resummation

different jet accuracy beyond accuracy beyond
multiplicities. NLO. (N)LL of parton
showers.
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Merging NLO Shower Monte Carlo samples

When merging NLOy and NLOy 1 samples separated by .., the
unphysical dependence shows up as o>y C log(pcut/Q)-
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Merging NLO Shower Monte Carlo samples

When merging NLOy and NLOy 1 samples separated by .., the
unphysical dependence shows up as o>x C log(jicut/Q).

Resumming this dependence with parton showers (N)LL is usually not
enough! If shower approx. does not fully reproduce singularities, left-over
dependence is O(a?L?) ~ O(a.) = NLOy in the resumm. region (a.L? ~ 1).
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Resumming this dependence with parton showers (N)LL is usually not
enough! If shower approx. does not fully reproduce singularities, left-over
dependence is O(a?L?) ~ O(a.) = NLOy in the resumm. region (a.L? ~ 1).

Merging scale cannot be pushed too low into the resummation region,
otherwise the NLO accuracy of inclusive sample is spoiled.
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Merging NLO Shower Monte Carlo samples

When merging NLOy and NLOy 1 samples separated by .., the
unphysical dependence shows up as o>x C log(jicut/Q).

Resumming this dependence with parton showers (N)LL is usually not
enough! If shower approx. does not fully reproduce singularities, left-over
dependence is O(a?L?) ~ O(a.) = NLOy in the resumm. region (a.L? ~ 1).
Merging scale cannot be pushed too low into the resummation region,
otherwise the NLO accuracy of inclusive sample is spoiled.

Picking an high scale means that one is forced to describe relatively hard
jets only at the lower accuracy (LO).
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Merging NLO Shower Monte Carlo samples

When merging NLOy and NLOy 1 samples separated by .., the
unphysical dependence shows up as o>x C log(jicut/Q).
Resumming this dependence with parton showers (N)LL is usually not
enough! If shower approx. does not fully reproduce singularities, left-over
dependence is O(a?L?) ~ O(a.) = NLOy in the resumm. region (a.L? ~ 1).
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Multiscale Improved NLO.

MINLO is CKKW-inspired recipe to set a priori the scales of a NLO
calculation involving multiple scales. [Hamilton et al. 1206.3572]
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Multiscale Improved NLO.

MINLO is CKKW-inspired recipe to set a priori the scales of a NLO
calculation involving multiple scales. [Hamilton et al. 1206.3572]

Like CKKW, it also includes LL Sudakovs factors, that regulate IR
divergencies (e.g. H+1 jets finite p?. — 0)
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Multiscale Improved NLO.

MINLO is CKKW-inspired recipe to set a priori the scales of a NLO
calculation involving multiple scales. [Hamilton et al. 1206.3572]

Like CKKW, it also includes LL Sudakovs factors, that regulate IR
divergencies (e.g. H+1 jets finite p?. — 0)

NLO accuracy for inclusive sample not achieved in MiNLO (LL Sudakov)
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MINLO is CKKW-inspired recipe to set a priori the scales of a NLO
calculation involving multiple scales. [Hamilton et al. 1206.3572]

Like CKKW, it also includes LL Sudakovs factors, that regulate IR
divergencies (e.g. H+1 jets finite p?. — 0)

NLO accuracy for inclusive sample not achieved in MiNLO (LL Sudakov)

Including NLL terms (B-) in MiINLO Sudakovs, NLO accuracy for inclusive
sample can be restored . [Hamilton et al. 1212.4504]
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MINLO is CKKW-inspired recipe to set a priori the scales of a NLO
calculation involving multiple scales. [Hamilton et al. 1206.3572]

Like CKKW, it also includes LL Sudakovs factors, that regulate IR
divergencies (e.g. H+1 jets finite p?. — 0)

NLO accuracy for inclusive sample not achieved in MiNLO (LL Sudakov)

Including NLL terms (B-) in MiINLO Sudakovs, NLO accuracy for inclusive
sample can be restored . [Hamilton et al. 1212.4504]

Achieves NLO merging without merging scale (H+0 jets is never present)
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Multiscale Improved NLO.

MINLO is CKKW-inspired recipe to set a priori the scales of a NLO
calculation involving multiple scales. [Hamilton et al. 1206.3572]
Like CKKW, it also includes LL Sudakovs factors, that regulate IR
divergencies (e.g. H+1 jets finite p?. — 0)

NLO accuracy for inclusive sample not achieved in MiNLO (LL Sudakov)
Including NLL terms (B2) in MiNLO Sudakovs, NLO accuracy for inclusive

sample can be restored . [Hamilton et al. 1212.4504]
Achieves NLO merging without merging scale (H+0 jets is never present)
[Campbell et al. 1303.5447] [ATLAS-CONF-2013-072]
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POWHEG/MiINLO as a path to NNLO+PS.

For simple processes (e.g. gg — H), using HNNLO (caniet ai. 0s01 3252) for
event-by-event reweighting results in a NNLO+PS
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construction startat O (a?). independent LO variable
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POWHEG/MiINLO as a path to NNLO+PS.
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POWHEG/MiINLO as a path to NNLO+PS.

For simple processes (e.g. gg — H), using HNNLO (caniet ai. 0s01 3252) for
event-by-event reweighting results in a NNLO+PS

do
W (y) = (dy>HNNLO _ 02a§+63a§’+04o/§ :1+C4_ P
(dfa) 202 + czad + ot + ... g °
dy HJ—-MIiNLO
\/ Integrates back to \/ NLO accuracy of Hj is ? Needto reweight after
NNLO cross-section by maintained. Corrections generation, for each
construction start at O (a?). independent LO variable

Is this the only way to NNLO+PS ?

See Christian’s talk next . ..
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Interplay between NLO QCD and NLO QED corrections

First examples in single vector boson production

[Bernaciak, Wackeroth, arXiv:1201.4804]

Two separate implementations for W+:
[Barzé et al., arXiv:1202.0465]

@ NLO QCD + NLO EW, only 1st QCD emission by POWHEG. Interfaced to QCD

parton shower (PYTHIA / HERWIG). No photon-induced nor multiple photon
radiation.

@ Simultaneous NLO QCD and QED correction on first emission by POWHEG,
interfaced to QCD (PYTHIA) and QED (PHOTOS) parton showers.
POWHEG-BOX handles quasi-collinear QED radiation from massive legs.
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Interplay between NLO QCD and NLO QED corrections

First examples in single vector boson production

TWO Separate |mp|ementat|ons for Wi . [Bernaciak, Wackeroth, arXiv:1201.4804]
' [Barzé et al., arXiv:1202.0465]

o NLO QCD + NLO EW, only 1st QCD emission by POWHEG. Interfaced to QCD
parton shower (PYTHIA / HERWIG). No photon-induced nor multiple photon
radiation.

@ Simultaneous NLO QCD and QED correction on first emission by POWHEG,
interfaced to QCD (PYTHIA) and QED (PHOTQOS) parton showers.
POWHEG-BOX handles quasi-collinear QED radiation from massive legs.

Slmultaneous NLO QCD and QED also available for DY

[Barzé et al., arXiv:1302.4606]
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EW Sudakov logs and weak emissions in PS

EW logs don’t cancel as QCD, partonic processes are not EW singlets

Sizeable effects at LHC [1312.3524] Machinery started for EW showers
£115 in Pythia [1401.5238]
E e Interleaved QCD-EW evolution,
g T o matched to QCD and EW ME,
g o better agreement with data
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Interference issues in the SM: single top W¢-channel

In general, LO QCD + NLO EW must be treated as LO EW + NLO QCD
In the SM, a prime example is gg — Wbt vs. gg — tt — WTbt at NLO

o

e Contributions from doubly resonant seem to spoil perturbative convergence.

o DR removes | M, |? (£2Re{M, M:,.}). Not gauge invariant (but violations
numerically small)

@ DS cancels the resonant contribution near the doubly—resonant region in a
(almost) gauge-invariant way | M, + M, |2

do/dn‘ [pb]
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In the SM, a prime example is gg — Wbt vs. gg — tt — WTbt at NLO

o

e Contributions from doubly resonant seem to spoil perturbative convergence.

o DR removes | M, |? (£2Re{M, M:,.}). Not gauge invariant (but violations
numerically small)

@ DS cancels the resonant contribution near the doubly-resonant region in a
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Interference issues in the SM: single top W¢-channel

Recent aMC@NLO calculation provides better approach [Frederix 1311.4893]
Complete pp — eTvep v,bb + X at NLO in 4F scheme (my, # 0)
b b b
Yy Yy Yy
W W et
et et Ve
Ve Ve o
b b b

Includes SR,DR, and NR contributions, off-shell effects and interferences
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Interference issues in the SM: single top W¢-channel

Recent aMC@NLO calculation provides better approach [Frederix 1311.4893]
Complete pp — etvep v,bb + X at NLO in 4F scheme (m;, # 0)
Includes SR,DR, and NR contributions, off-shell effects and interferences

Results show moderate NLO corrections and scale unc. (20 — 30%).

T T
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LO: Ww

—F —— WWbb NLO
j:l WWbb NLO 5F 10.00 —— Wibb L0 B
2001 = I —— WWbb NLO 4F | 500k F R L
= 1 L0: tt
I i Lo: Wt
—

i 1.00

q:\:' ] 050
=] -

%ﬂt 0.10F

0.05 -

1.6
1.4
2 L scale unc. L2F e

o 1.0

1 N e 0.8

S ——

scale unc.
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Extremely challenging calculation, NLO only for now. Shower Matching?
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Interference issues beyond the SM: H=*t

DIAGRAM REMOVAL vs SUBTRACTION - LHC, s-14TeV, 2HDM-II, mH-100 GeV. tans-30

Same issue present in H*¢ T
associate production with Bl e T
T >/mﬁ< o W . R
Implemented in both POWHEG {F

and MC@NLO [Klasen et al. 1203.1341] o e 0

[Weydert et al. 0912.3430] o S
DR vs. DS differences seems o s
smaller in his case, compared to § oo
doubly resonant contributions

o.

I I I
100 200 300 400
pr o (BaV)
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Interference issues beyond the SM: gg

Same effect studied also in squark-squark production [Gavin et al. 1305.4061]
Interference with gg when gluino is resonant

aj 0
9 TTEETOY -~ === i ng/ N
! 7 g
4 -
| qj
q1—>—1cem&\/\/ G i
T q;
i et DS-Il
. . _ e
Dominant channel in the high mass region =+ | =
, T

p . :
\ o (bp — &&/i

“““ [ VE=7TeV

. NLO' NLL

0 500 1000 1500

" 3 }LL
—!i E —LL—
° 105; ——LLH’H"%
; “&L—b"‘“u‘%‘_‘_
Inclusive effects small, again more RS
pronounced in particular distributions S
o 100 200 300 400 o [GESD
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Heavy quarks in the final state

[Eur.Phys.J.C 71 (2011)] [JHEP 1103:136 (2011)]
CMS \s=7TeV,L=3.1pb"

(&}
= of —* Vertex-based ATLAS 1 < L I B
; —e— Muon-based \s=7TeV, det—aApb" T [ PYTHIA = Data (p" > 56 GeV)
S 1.5 ## POWHEG+Pyinia E - =mza@s':t;g- o Data (b > 84 GeV)
I ; ! o | . c‘a;céd‘,l <20 «  Data(p;" > 120 GeV)
1 L—l—l o . P7>15GeV, <2 Normalisation region
i o %% o s Pr =
| b T— T T 5 5T <30 Rt
s T \ \

2F ——|y|<0.3

e} i

E ¥ TR SR A S
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1 ]

2F = 12<lyl<21 ! E

1 PRI

! B TR O S il

20 30 40 100 200 300
JetpT[GeV]

Inclusive b-jets cross sections in good agreement with MC

As the two b-jets become closer MC start to show disagreements.
Disagreement grows with pr, where g — bb dominates.

Use Heavy Quark Fragmenting Jet Functions for simultaneous

resummation of jet resolution and quark mass logs [Bauer, Mereghetti 1312.5605]
How to include these resummations into a fully exclusive Montecarlo ?
Geneva...
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Color coherence

6‘ig < 91]

(:bz'g =0
(w.r.t. 4-j plane)

J

At Tevatron collinear approx. + angular-ordering provided good modeling
of color-coherence effects.
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Color coherence

[DO Phys. Lett. B 414 419 (1997)]
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At Tevatron collinear approx. + angular-ordering provided good modeling
of color-coherence effects.

Shower Monte Carlo needed to take angular-ordering into account.
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Color coherence

[DO Phys. Lett. B 414 419 (1997)]
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At Tevatron collinear approx. + angular-ordering provided good modeling
of color-coherence effects.

Shower Monte Carlo needed to take angular-ordering into account.
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Color coherence
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At Tevatron collinear approx. + angular-ordering provided good modeling
of color-coherence effects.

Shower Monte Carlo needed to take angular-ordering into account.
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Color coherence
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[CMS Phys. Lett. B 414 419 (1997)]
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At Tevatron collinear approx. + angular-ordering provided good modeling
of color-coherence effects.

Shower Monte Carlo needed to take angular-ordering into account.

At LHC, general features are still described fairly
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Color coherence

T |
[ Cus smuttion ] [CMS Phys. Lett. B 414 419 (1997)]
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At Tevatron collinear approx. + angular-ordering provided good modeling
of color-coherence effects.

Shower Monte Carlo needed to take angular-ordering into account.
At LHC, general features are still described fairly

But larger coherence effects start to show up in angular correlation
between 2nd and 3rd jet
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Color coherence

T |
[ Cus smuttion ] [CMS Phys. Lett. B 414 419 (1997)]
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At Tevatron collinear approx. + angular-ordering provided good modeling
of color-coherence effects.

Shower Monte Carlo needed to take angular-ordering into account.
At LHC, general features are still described fairly

But larger coherence effects start to show up in angular correlation
between 2nd and 3rd jet

Can we learn something from 3-jets at NLO ? Njet+SHERPA [Badger et al., 1309.6585]
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Jets gap and BFKL dynamics

Study of effects beyond NLO at large rapidity separations, comparison
between POWHEG+SMC and HEJ [SA et al., 1202.1475]
Indentified few other observables with larger difference in radiation patterns
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Conclusions and outlook

Monte Carlo’s have been tested across a wide range of energies
and phase spaces.
In general, NLO SMC'’s are performing remarkably well to describe
LHC data.
When looking into extreme areas of phase space or in high
multiplicity regions, we start seeing (expected) disagreements.
NLO+PS automation is now mature and helpful for new analysises.
Care must still be taken for selected processes: interference
effects, new regimes, BSM physics . ..
New developments and theoretical ideas are pushing MC forward
in three main directions

e Merge NLO sample with different NLO multiplicities.

e Increase the fixed-order accuracy beyond NLO.

e Increase the resummation accuracy beyond parton showers.
Many other interesting subjects that have not been covered: MPI,
soft-QCD, MC tunes ...

Thank you for your attention!
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