

EUROPEAN SPALLATION SOURCE

## **IOTs for ESS**

Morten Jensen

www.europeanspallationsource.se November 12, 2013

EnEfficient RF Sources Workshop Cockcroft Institute 3-4 June 2014

## Agenda



EUROPEAN SPALLATION SOURCE

- Introduction to ESS
- Power profile and Technology Choices
- IOTs for ESS
  - Review of accelerator experience with IOTs
  - The ESS IOT specification
  - Current status

Experiments

Target

Linear accelerator





- The European Spallation Source (ESS) will house the most powerful proton linac ever built.
  - The average beam power is five times greater than SNS.
  - The peak beam power will be over seven times greater than SNS
- The linac will require over 150 individual high power RF sources
- We expect to spend over 200 M€ on the RF system alone

## **Neutron Spallation Sources**

#### Short Pulse Concept

- Protons stored in circular accumulator
- $\circ$  Accumulator ring of 300 m = 1  $\mu s$
- Neutrons cooled in moderator following impact on target
- $\circ$  Neutron time constant = few 100  $\mu s$
- Short pulse at ESS power would destroy target or a 100 µs ring would be around 30 km





#### Long Pulse Concept

- o No accumulator
- Neutrons still cooled in moderator following impact on target
- Choppers and long beam lines provide energy measurement
- Peak beam power  $\leq$  125 MW





## The European Spallation Source

#### ESS is a

- long-pulse neutron spallation source based on a large linac
- Proton linac designed for 5 MW average power
- European project located in the southern part of Sweden





## The ESS Superconducting Power Profile > 150 cavities/couplers



## Elliptical (704 MHz) RF System Layout



EUROPEAN SPALLATION SOURCE

# **Klystrons Modulator Racks and Controls** WR1150 Distribution

4.5 Cells of 8 klystrons for Medium Beta 10,5 Cells of 8 klystrons (IOTs) for High Beta

## Where next? The ESS Requirement



#### Time to develop Super Power IOT

| Accelerating Structure | Freq.<br>(MHz) | Quantity | Max Power (kW) |
|------------------------|----------------|----------|----------------|
| RFQ, DTL               | 352            | 5        | 2200**         |
| Spoke                  | 352            | 30       | 330**          |
| Elliptical Medium Beta | 704            | 34       | 860**          |
| Elliptical High Beta   | 704            | 86       | 1100**         |

\*\* Plus overhead for control

## The Inductive Output Tube

Invented in 1938 by Andrew V. Haeff as a source for radar

- To overcome limitation of output power by grid interception
- Pass beam trough a resonant cavity
- Achieved: 100 W at 450 MHz, 35% efficiency

Used first in 1939 to transmit television images from the Empire State Building to the New York World Fair

IOTs then lay dormant

Intense competition with velocity modulated tubes (klystron had just been invented by the Varian Brothers.) Difficult to manufacture

The IOT is often described as a cross between a klystron and a triode hence Eimac's trade name 'Klystrode'



EUROPEAN

SOURCE

## How does the IOT work?





Reduced velocity spread compared to klystrons

Deceleration = RF

**Higher efficiency** 

No pulsed high voltage

## A Questionnaire

(This will take one minute of your time and will help us to improve our service to you!)

Who here believes that high efficiency is a good thing?

Do we really need overhead for LLRF?

Do we <u>like</u> to operate below absolute maximum output power to improve reliability?

Is the efficiency at <u>saturation</u> really the most important measure?

Need to consider the whole system and the actual point of operation







## The Performance Comparison











## An RF Source for a Proton Linac



## Typical Results (Broadband Broadcast IOT)

**EUROPEAN** 

SPALLATION

SOURCE



## Typical Results (Broadband Broadcast IOT)





## Selection of Laboratories currently using IOTs

![](_page_16_Picture_1.jpeg)

EUROPEAN SPALLATION SOURCE

| Accelerator                              | Туре                        | Number of IOTs in<br>use                    | IOTs<br>in use    | Typical operation                                                            |
|------------------------------------------|-----------------------------|---------------------------------------------|-------------------|------------------------------------------------------------------------------|
| Diamond Light Source                     | Synchrotron<br>Light Source | 8 in use<br>4 on test stand<br>1 on booster | TED<br>e2v<br>L3  | CW operation (500 MHz)<br>Typically 50-60 kW each<br>Combined in groups of 4 |
| ALBA                                     | Synchrotron<br>Light Source | 12 in use<br>1 on test stand                | TED               | CW operation (500 MHz)<br>Typically 20-40 kW each<br>Combined in pairs       |
| Elettra                                  | Synchrotron<br>Light Source | 2 in use                                    | TED<br>e2v        | CW operation (500 MHz)<br>Initially ~ 65 kW with one tube, now ~<br>35 kW    |
| CERN                                     | Injector for LHC            | 8 (planned)<br>Currently on test            | TED               | CW operation (801 MHz)<br>60 kW each                                         |
| BESSY                                    | Synchrotron<br>Light Source | 1                                           | СЫ                | CW operation<br>Up to 80 kW                                                  |
| NSLS II                                  | Synchrotron<br>Light Source | 1 on booster                                | L3                | CW tested<br>Up to 90 kW<br>Normal 1 Hz cycle 1 - 60 kW                      |
| ALICE and EMMA<br>(Daresbury Laboratory) | Technology<br>Demonstrator  | 3 on test                                   | TED<br>CPI<br>e2v | Pulsed (18 ms)<br>1.3 GHz<br>16-30 kW                                        |

and more ...

## **Examples** 3<sup>rd</sup> Generation Light Source Storage Ring

![](_page_17_Picture_1.jpeg)

![](_page_17_Figure_2.jpeg)

#### Three 500 MHz 300 kW amplifier for SR - 4 x 80 kW IOT combined One 80 kW for the Booster

![](_page_17_Picture_4.jpeg)

![](_page_17_Picture_5.jpeg)

![](_page_17_Picture_6.jpeg)

![](_page_17_Picture_7.jpeg)

## Examples 3<sup>rd</sup> Generation Light Source Storage Ring

![](_page_18_Picture_1.jpeg)

Normal conducting cavities IOTs combined in pairs (cavity combiner)

6 RF plants of 160 kW 500 MHz 2 IOTs combined per cavity

![](_page_18_Figure_4.jpeg)

Currently 13 IOT in operation (12 on SR, one on test stand)

![](_page_18_Picture_6.jpeg)

## Examples

![](_page_19_Picture_1.jpeg)

## 150 kW IOT based amplifier for Combination of 2x80 kW

rei R am

.....

CERN 800 MHz 60 kW

> Metrology Light Source (Willy Wien Laboratory) CPI 90 kW IOT (K5H90W1) > 33 000 operating hours

![](_page_19_Picture_5.jpeg)

![](_page_19_Picture_6.jpeg)

## **ESS IOT Options**

![](_page_20_Picture_1.jpeg)

EUROPEAN SPALLATION SOURCE

![](_page_20_Picture_3.jpeg)

Combine 'low power' single beam IOTs by combining output (for example Diamond and ALBA) High number of IOTs for high power More auxiliary supplies, cavities, magnets etc

![](_page_20_Picture_5.jpeg)

Single beam high power IOT High voltage gun (> 90 kV) Large cathode for low charge density High voltage modulator design

![](_page_20_Picture_7.jpeg)

#### Multi-Beam IOT

Reduced high voltage (< 50 kV) Low space charge per beam Very compact High efficiency

## The Super Power IOT Challenge

#### Multi-beam considerations - The need for more Current

Gun arrangement:

Individual spherical cathodes Distribution of cathodes All need consideration on how to get RF into the cathode/grid space Phase and amplitude matching of each cathode Management of variation in individual cathodes (common HV) Mechanical Integrity EUROPEAN

SOURCE

Output cavity:

Cavity design to interact with multiple beams Efficiency combination Minimization of sidebands and spurious lines Impact on output in case of varying cathode perveance

Potentially suitable from 200 MHz to 1.5 GHz or higher

## **Design and Simulation**

- Analytical and Numerical codes available
- Commercial codes well developed in addition to manufacturers own

![](_page_22_Picture_3.jpeg)

![](_page_22_Picture_5.jpeg)

## **Typical Broadcast IOT**

![](_page_23_Picture_1.jpeg)

![](_page_23_Picture_3.jpeg)

## 700 MHz HOM IOT Experience

![](_page_24_Picture_1.jpeg)

![](_page_24_Figure_3.jpeg)

![](_page_25_Picture_0.jpeg)

![](_page_25_Picture_1.jpeg)

EUROPEAN SPALLATION SOURCE

### Small

### High Efficiency

Cost typically does not scale with output power

## Low power consumption in standby or for reduced output power

No pulsed HV

## An IOT for ESS

![](_page_26_Picture_1.jpeg)

EUROPEAN SPALLATION SOURCE

| Parameter       |              | Comment                             |
|-----------------|--------------|-------------------------------------|
| Frequency       | 704.42 MHz   | Bandwidth > +/- 0.5 MHz             |
| Maximum Power   | 1.2 MW       | Average power during the pulse      |
| RF Pulse length | Up to 3.5 ms | Beam pulse 2.86 ms                  |
| Duty factor     | Up to 5%     | Pulse rep. frequency fixed to 14 Hz |
| Efficiency      | Target > 65% |                                     |
| High Voltage    | Low          | Expected < 50 kV                    |
| Design Lifetime | > 50,000 hrs |                                     |

#### **Target: Approval for ESS series production in 2017/18**

Work is being carried out in collaboration with CERN ESS to procure prototypes CERN to make space and utilities available for testing

## 1.2 MW Multi-Beam IOT

- ESS launched tender for IOT prototypes
- Tender replies received and evaluation near complete
  - Several technical implementations received
- Order expected in the next couple of weeks
- Delivery in 24 months
- Site acceptance at CERN followed by long term soak test
- ESS > 3 MW saved from from high beta linac
  = 20 GWh per year
- Had hoped to present first work and pictures but can't yet.

![](_page_27_Picture_11.jpeg)

## Thank You

![](_page_28_Picture_1.jpeg)

EUROPEAN SPALLATION SOURCE

## Is there interest from others in creating a special IOT interest group?

![](_page_28_Picture_4.jpeg)