ACCELERATOR CONTROL SYSTEMS

mark.plesko@cosylab.com

Glossary 1 - Networking

- LAN local area network: directly connected computers
- Ethernet physical (electric) communication
- TCP/IP how to send/receive and assemble small data packets over network, in LAN or Internet
- switch box which interconnects many computers
- fieldbus simple low-cost connection of many sensors to one CPU

Glossary 2 - Electronics

- I/O input/output: typical the place where digital data is transformed from/to something physical
 - example: printer, disk, ADC, etc.
- ADC analog to digital conversion
 DAC digital to analog conversion
 - □ standard ranges +/-10V, +/-5V or 0-10V, 0-5V
 - resolutions from 8 to 16 bits
 - precision usually worse than resolution !
- Binary or digital I/O only two levels, for switches, etc.
 - beware of different levels: TTL (5V), 24V
 - open collector: the current for switching is not provided

Glossary 3 - Interfaces

 interface - the agreed way how two different things fit together (hardware and software)

don't forget about the connector!

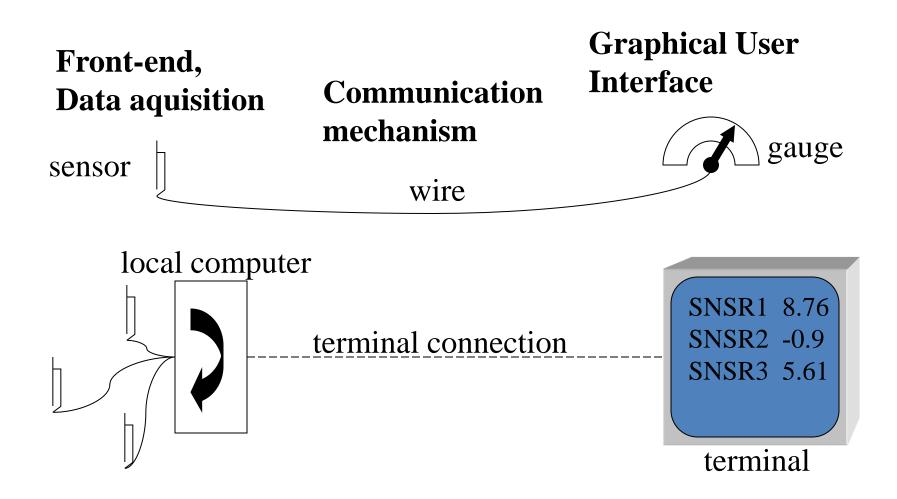
- RS-232 simple serial interface used in PC world GPIB - general purpose interface bus
 - many commercial devices (even oscilloscopes) use one of these
 - much work to interface, because software commands are not standardized - each device has own, often insufficiently documented
- API application programmer's interface: a set of library functions doing frequently needed actions

Glossary 4 - Hardware

- CPU central processing unit: heart of the computer, sometimes used for whole computer
- microcontroller microprocessor with integrated I/O
- FPGA Field Programmable Gate Array: millions of logic gates (AND, OR, etc.) that can be configured and connected with a "programming language" - VHDL
- DSP digital signal processor: specialized microcontroller doing fast Fourier and other transformations
- front-end: all that stands in front of the hardware
 - VME standard format for I/O modules and processors
 - PLC programmable logic controller: diskless microprocessor following simple logic instructions
- workstation high performance desktop computer

Glossary 5 - User Level COSYLAB

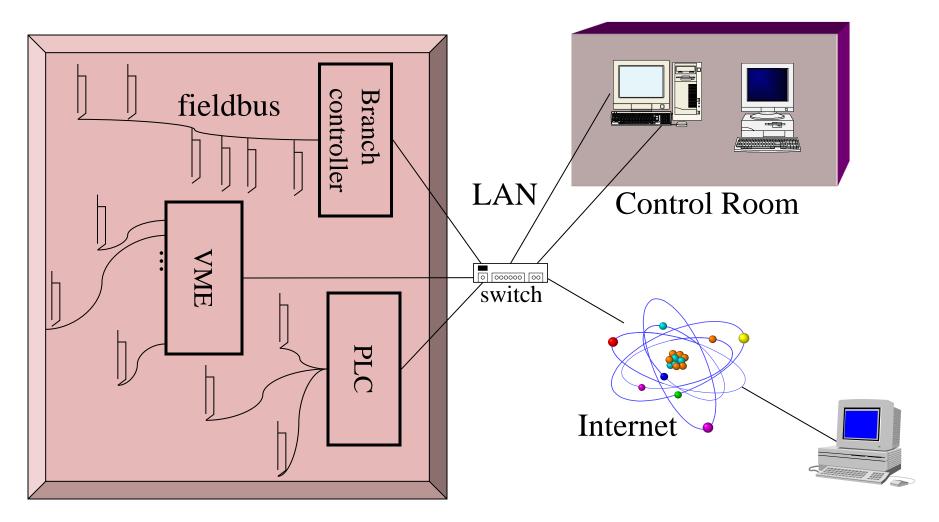
- GUI graphical user interface (buttons, menus)
- SCADA supervisory control and data acquisition: commercial CS, with GUI building tools and software bus
- database where data are stored and retrieved efficiently
 - RDBMS relational database management system: a powerful database with data arranged in separate tables, linked by defining relations between columns
 - SQL structured query language: the most common standardized language used to access databases.
- application one or more programs for a specific problem
 - usually includes GUI for user interaction

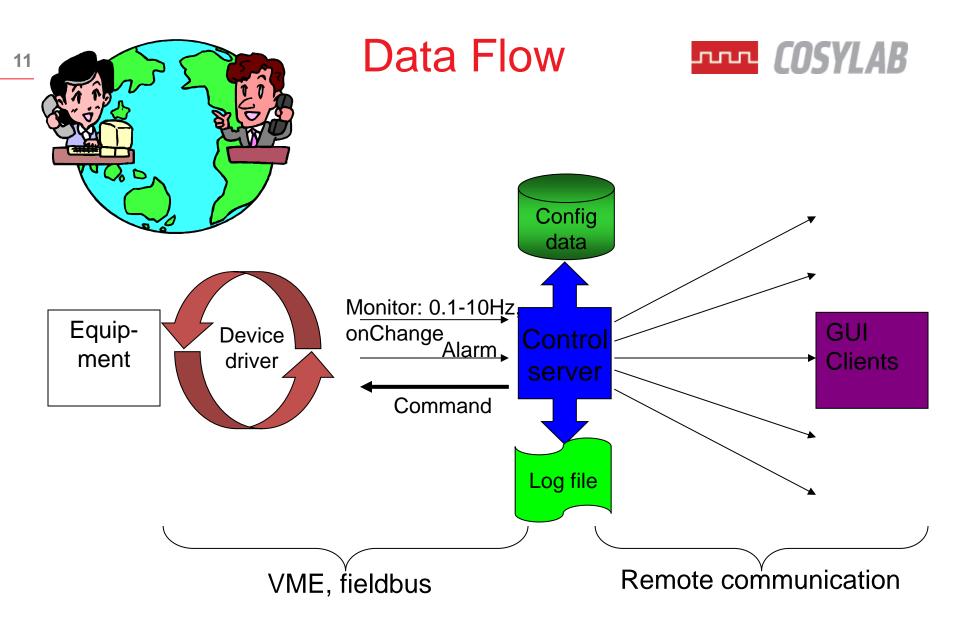

Glossary 6 - Programming m COSYLAB

- synchronous make request and wait for response
- asynchronous response comes later, independently
 - polling periodic checking if response is ready
 - callback a response sent asynchronously, interrupting the receiver
- scalability design how a CS is applied to large systems
- real-time a process must finish in a given time
- OO object oriented: programmer defines objects (structures) which exchange messages (function calls)
 - very similar to "normal" way of thinking
 - efficient approach for design, "software reuse" and upgrading

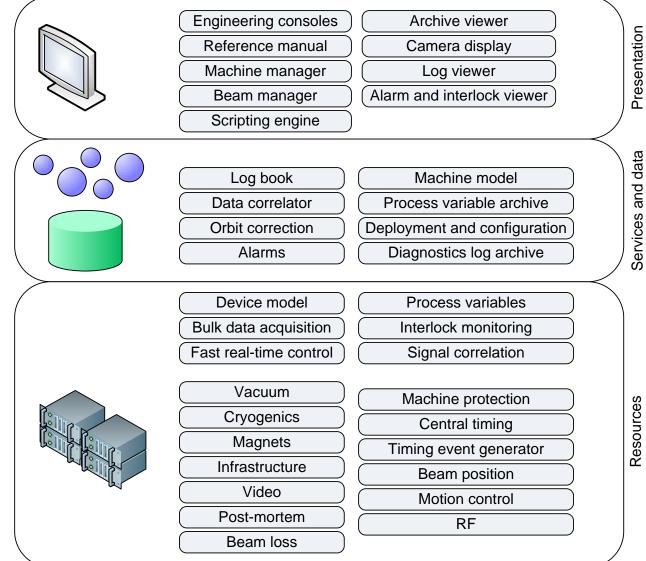
Let's first define what is a CS **COSYLAB**

- A tool that allows to operate the complexity of the accelerator from a single location
 - Convert physical properties to electric (analog) signals
 - convert analog signals to digital values
 - transfer digital values over network
 - Access remotely each single device
 - Execute complex processes (injection, ramping, tuning, feedback systems, safety, etc.)
 - Log and archive data, events, actions
 - Allow physicists to "run" the accelerator with Matlab ③


From the Analog to the Digital... **COSYLAB**



COMPONENTS OF THE CONTROL SYSTEM


¹³ Main CS Components

What has to be in real time?

Interconnection of components and services

Which components are getting more important?

LHC MACHINE

Middleware or software bus

PURPOSE

NETWORK

TECHNICAL

GIGABIT

OPERATOR

CONSOLES

FILE SERVERS

RT Lynx/OS

OPTICAL

BEAM POSITION MONITORS.

BEAM LOSS MONITORS.

BEAM INTERLOCKS.

RE SYSTEMS. ETC.

VMÉ FRONT ENDS

- What is their purpose, are they really different
 - Yes in terms of technical implementation
 - Probably yes in terms of performance
 - No in terms of what they provide for the CS

EPICS, CMW/FESA, TANGO, TINE, DOOCS, MADOCA,...

FIXED

DISPLAYS

APPLICATION SERVERS

WORLDFIP

Front Ends

SEGME1 Bits/sec)

2.5 MB

SENSORS

QUENCH PROTECTION AGENTS.

POWER CONVERTERS FUNCTIONS

GENERATORS, CRYO TEMPERATURE

nn COSYLAB

OPERATOR

CONSOLES

SCADA SERVERS

ACTUATORS AND SENSORS

CRYOGENICS, VACUUM, ETC.,

TIMING GENERATION

TCP/IP communication services

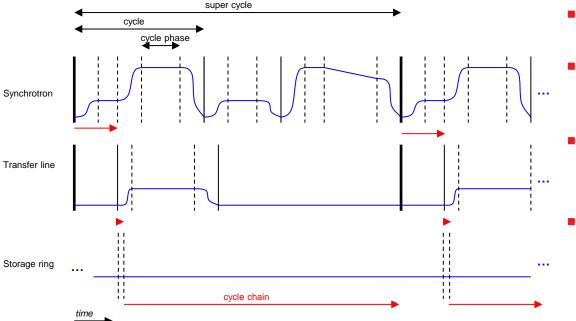
TCP/IP communication services

PLCs

TCP/IP communication services

RESOURCE TIER

RECTI/O


¹⁵ Why is EPICS so popular?

- A very strong user and developer community
- A large number of supported devices, and a relatively small set of interfaces
 - e.g. Universal motion control record
- Lightweight on dependencies
 - Does not depend on relatively complex middleware
 - few central services that would be singlepoints-of-failure.

Timing System

Graphical illustration of the concepts cycle phase, cycle, super cycle and cycle chain.

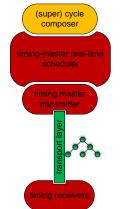
- Takes care of real-time (BTW, what is this?)
 - Must be a common solution for the entire facility
 - Should be one of the first systems to be completed
 - Provides
 - Triggers
 - Delay generators
 - Event distribution
 - Time distribution
- Accuracy to within 1 us, 1ns and for FELs even to 10 fs !

What does timing system include?

- it's like an orchestra; ...the better in sync the better it sounds
 - a conductor (=timing master) instructs
 - performers (=timing receivers) to play out formerly agreed work

layers from <u>composer to performer</u>:

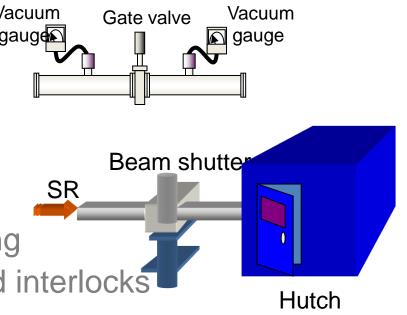
(super) cycle composer


- a high-level app for building table/s and play conditions defined by machine physics and beam requirements—and transforming into suitable format for (sw)
- timing-master real-time scheduler
 - for priority scheduling of the events to be pushed through (HW-RT)
- timing master transmitter (нw-кт)

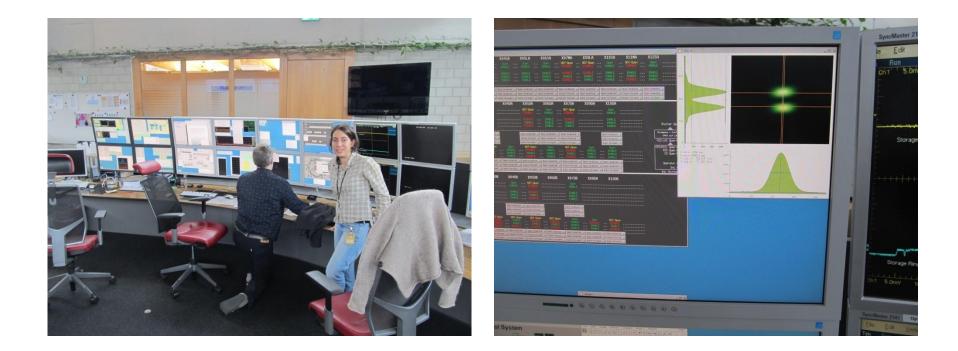
- transport layer
 - for real-time distribution of events (also clock and possibly time) (HW-RT)

- timing receivers
 - for real-time reaction to received events; providing host with triggers/IRQs, clock, and time (HW-RT)

Still Plenty of Work ...

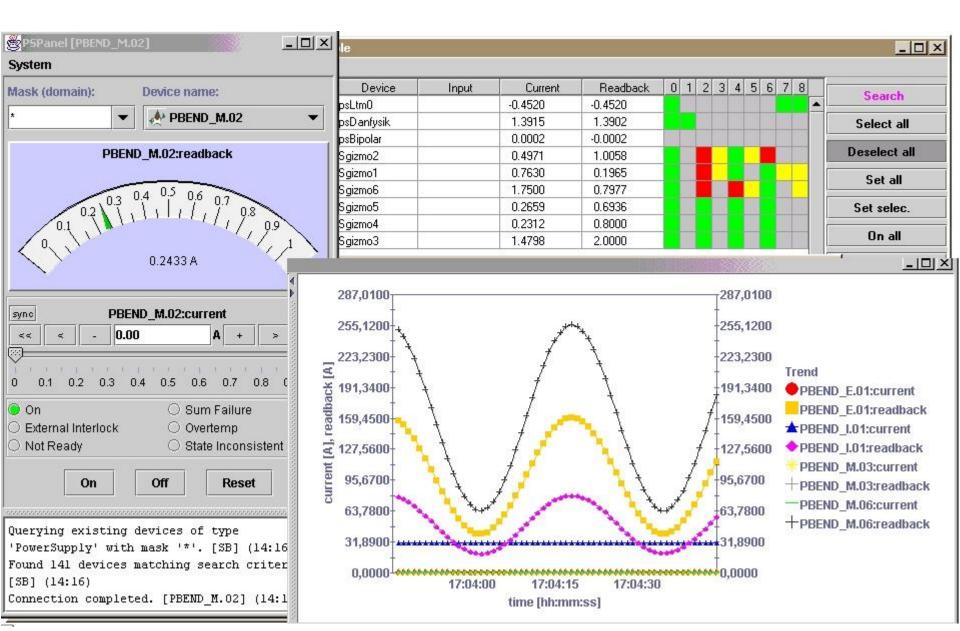


- interface I/O boards to the devices
 where to draw the line:ADC/DAC, serial/GPIB
- write low level device processing
 drivers, filtering, state machine
- configure middle-ware database
 name, type, properties (limits, conversion, updates, precision,...)
- make graphical user interface (GUI)

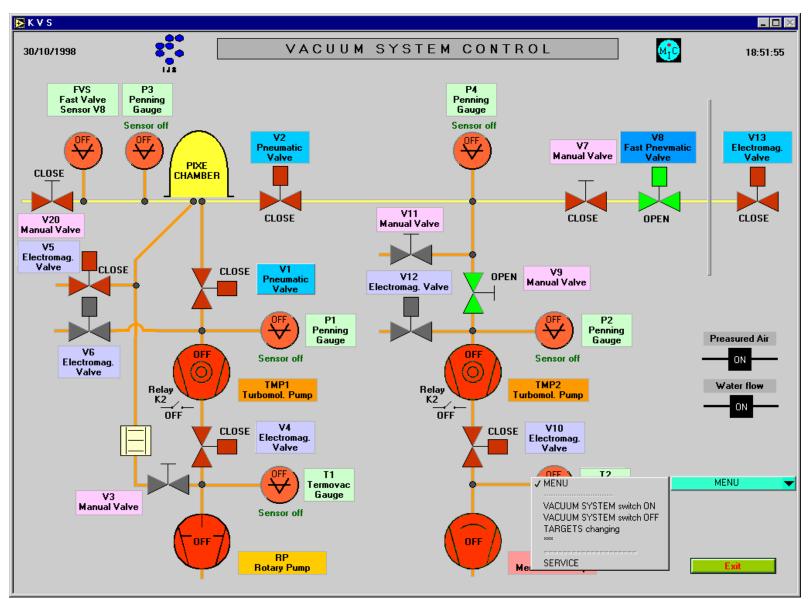

- Feedback systems separate communication, dedicated hardware
- Safety systems

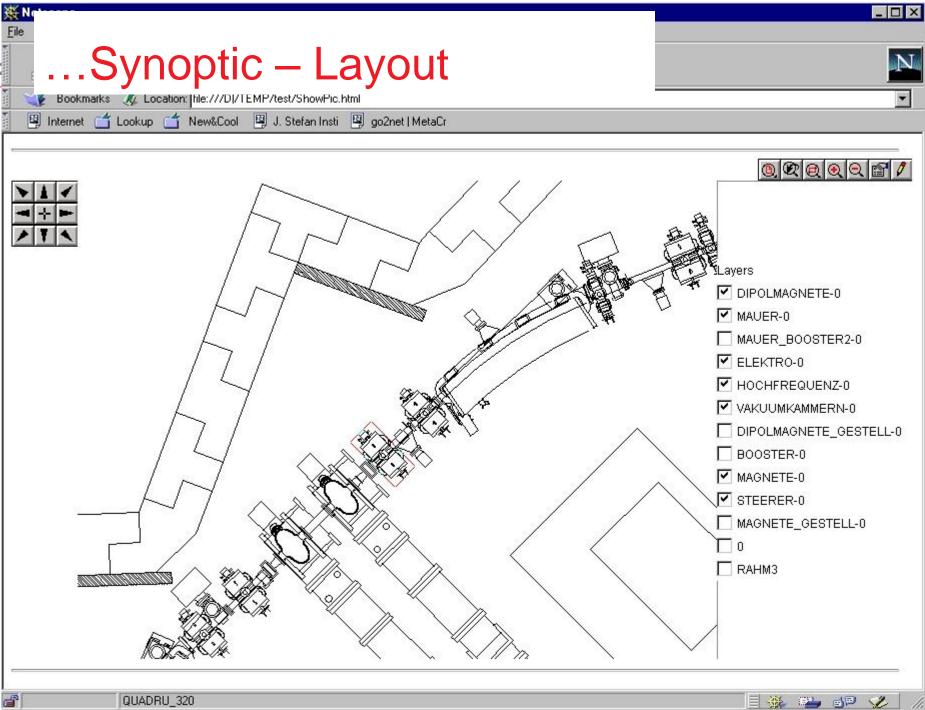
 equipment safety
 interlocks
 personal safety
 - radiation monitoring
 - access control and interlocks

20 Control Room For Display...



Success! Happy users. (above: first beam size measurements on new beamline)


... of Functional Panels...


21

....Synoptic - Process Diagram...

Machine Protection and Interlocks 1/2

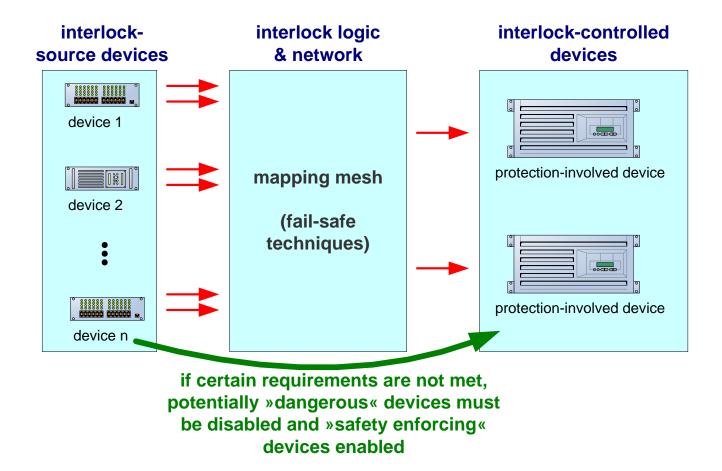
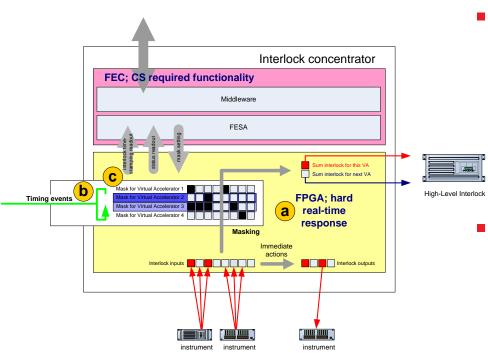



Figure 20: From the protection system point of view there are two types of devices; interlock-source devices and interlock-controlled devices.

Machine Protection and Interlocks 2/2

Interlock concentrator schematic overview

Balance between

- High Flexibility required: statespecific interlocks
 - Includes complex FPGA logic
- ITER and ESS: interlock system is equally important as the main control system

HARDWARE ISSUES (WHO CARES ABOUT THAT ANYWAY?)

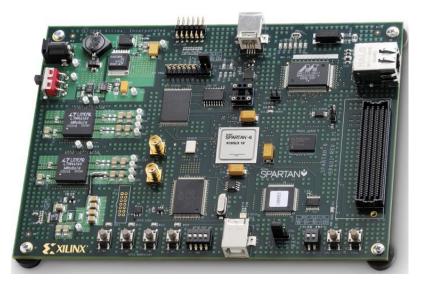
VME, cPCI(e), PXI, xTCA (MTCA.4), etc.

Why don't all the labs make the same choice?

- Potential criteria for evaluation:
 - Vendor support, maturity, longevity, maximum transfer rate, topology, form factor, availability, software support, user base, etc.

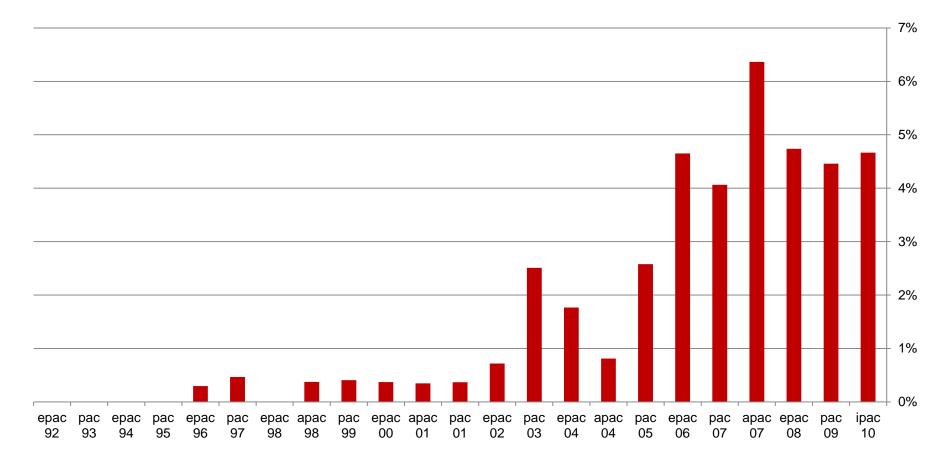
	VME	ATCA	cPCI
Vendor support	High/Declining	Low/Growing	Medium/Stable
Maturity	High	Medium	High
Longevity	Medium	High	High
Max. transfer rate	VME: 40MB/s VME64: 80MB/s VME64x: 160MB/s VME320: 320MB/s	1Gbps, 10Gbps (Gigabit Ethernet); 250MB/s/lane (PCIe)	PCI: 133MB/s PCIe: 250MB/s/lane (up to 16 lanes)
Topology	Master-slaves	Star Dual star Full mesh	Master-slaves

	VME	ATCA	cPCI
Form factor	6U (64 bit) 3U (32 bit)	12U (ATCA) 2U (μTCA)	3U
High availability	Medium	High	Medium
Software support (Linux, EPICS)	High	Medium	Medium
Cost	High	High	Medium
Users	SNS, SLS, Diamond Light Source, NSLS II, 	XFEL (LLRF), ITER, TPS (considering)	ALBA, TPS, CERN (LHC collimation), LANL, ORNL, ITER (planned)


- Main criteria for selecting hardware platform should be
 - Usability
 - Longevity
 - NOT "top performance" or coolness factor

Acceptance by majority in the industry.

Jean-Francois Gournay (CEA) : stay with well-improved solutions as much as possible (we use the same analog IOs and binary IOs VME boards - still manufactured - for 20 years.

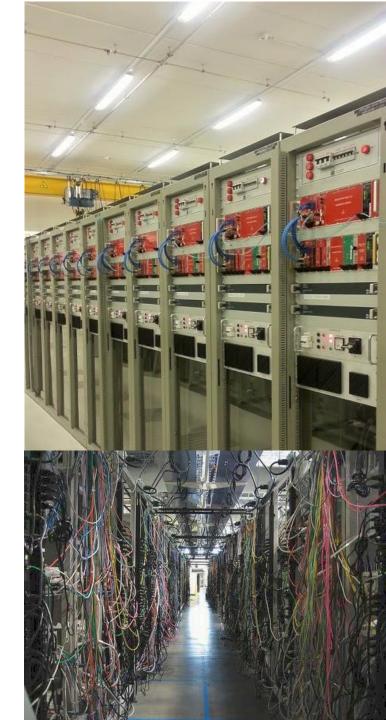

33 Trendy and Sexy – the FPGA COSYLAB

- FPGA: Field Programmable Gate Array
 - Integrated circuit designed to be configured by the customer <u>after</u> manufacturing
 - "reduces hardware development to configuration"
 - Obvious benefits
 - Many inputs and outputs, parallel processing, full synchronization, real time, flexible,...
 - Applications
 - LLRF, MPS, timing,
 DAQ,...

String "FPGA" in conference articles

Mastering complexity requires

³⁵ BRAIN power (more then CPU power)


- Advances in technology often give false sense of complexity reduction. Examples
 - 1. FPGA development environment. For few 100 euros a PC card with free, well supported tools. Feels like an easy start, but it's a marginal win. True challenge is in domain expertise and system knowledge.
 - 2. System 2.0 syndrome. With new tools and technologies, we'll fix ALL the shortcomings of the system 1.0 ... result: a proven, working system is replaced by an over-architected, heavy framework with late delivery.
- → Prudence, use of proven techniques

Elder Mathias (Canadian Light source) : *Be realistic on what is needed to commissioning the machine versus what is needed for optimal performance.*

³⁶ Who Cares About Cables?

Always expect trouble! :)

- Devices not connected properly
- Cables not wired correctly
- SW not configured correctly
- GUIs need to be tweaked
- Users not trained enough (RTFM)
 - Erroneous bug reports
- Integrators must be prepared for all of this

CONTROL SYSTEM DEVELOPMENT

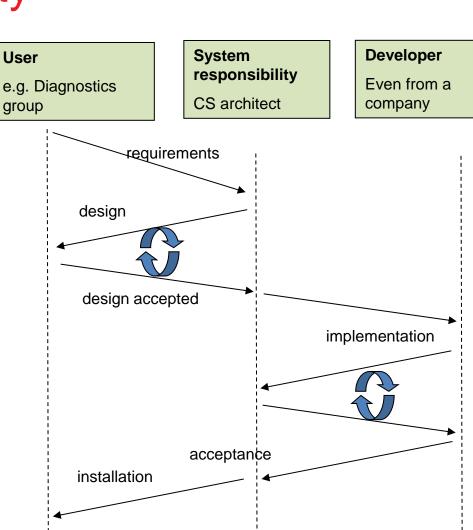
Beside A Control System **COSYLAB**

- Control System (CS) is not a DVD with an installation wizard, but rather:
 - Engineering according to specifications
 - Configuration of packages like EPICS, TANGO, FESA, TINE, DOOCS, MADOCA, LabView...
 - Outsourcing or in-house software and hardware development
 - Installation

³⁹ Role of CS in the project

- Relatively low technical risk
- Higher organizational risk
 - Collaboration across all the departments
 - Control system comes late in the project
 - Integrates with most of other subsystems
- Control Systems are an engineering discipline like all the others, but with an even more complicated cycle
 - Write specifications
 - Architecture
 - Design
 - Prototyping fun part
 - Test procedures

- Implementation (coding)
- Documentation
- Testing
- Debugging
- Acceptance
- Iterative development (evolution through upgrade phases)


Teams and Division of Responsibility

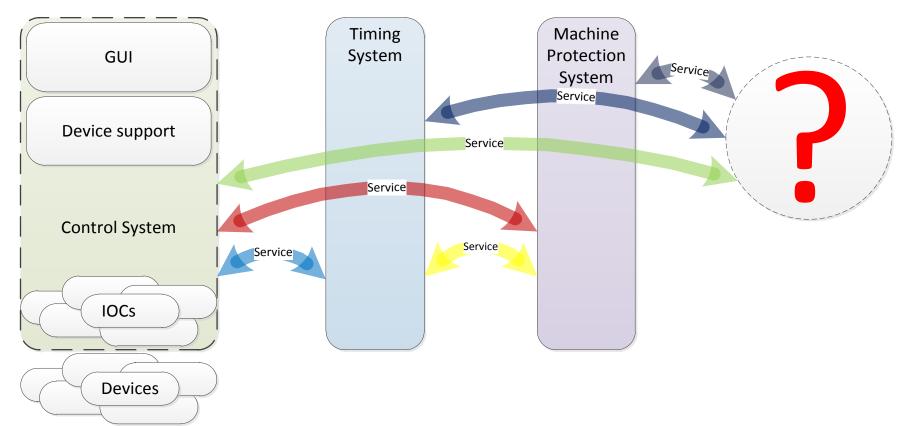
Coordinators / **Storage Ring Booster** (expert) (expert) Liasons **Design team Diagnostics** Vacuum (External) project (External) project (for discussions) manager manager **Middleware** Hardware **FESA** Engineers Engineer Engineer Engineer

Divide Work, but Maintain System Responsibility

- Define development procedures rigorously
- Divide the development among:
 - Within CS group
 - Other groups, experiments,...
 - Outsourcing (companies)
- Use a <u>lightweight</u> project tracking and reporting tool
- CS group defines acceptance procedures

Development process – our

- ⁴² experience from 100+ projects **COSYLAB**
 - Start with requirements very early
 - They will change later in any case, no matter how long you wait for the "final" requirements!
 - Standardize development
 - Applies to the whole cycle: design, implementation and testing procedure.
 - More important than standardizing components.


Matt Bickley [JLab]: The aspect that I think has been most helpful has been standardization of hardware and software[...] Another decision was the choice to develop and rigorously adhere to standard testing and implementation procedures.

Development process – our

- 43 experience from 100+ projects COSYLAB
 - Vertical prototypes from the beginning
 - With integrated software and hardware
 - E.g. vertical column (MedAustron), Control Box (ESS), Fair Host Machine (GSI/FAIR),...

- Iterate frequently
 - Yearly cycles
 - First specific requirements usually come when people comment on the first prototype!

44 Define Systems and Interfaces COSYLAB

- List ALL needed services
- Define systems without duplicating services
- Understand connections between systems
- Define interfaces between systems
- All must agree on them early on in the project

FINAL THOUGHTS

Should we expect clear technological "winners"?

- Accelerator CS is a very broad field with specific needs for every job
 - Timing needs
 - Safety needs
 - Reliability uptime needs
- Many installations are experimental by nature

Many arguments for very diverse approaches that blur the overall picture

- Computing power/\$ grows faster then project size
- Increasing expectations in power and flexibility of the CS
- Every added (cheap) CPU increases the entropy of the system

Increasing challenge of managing the added complexity

47 Future challenges

- Large international projects with in-kind contributions: not technical, but managerial challenge.
 - How can CS help
 - How should we design the CS to solve these issues

48 Conclusion

- CS has shifted over the years
 - From research to engineering
 - From performance to integration challenges
- But architecture and platforms are more or less stable
- So CS development task is how to integrate everything into the CS in-time, on-budget, and with a low-risk by using an increasingly large number of off-the-shelf components.

THANK YOU!

Mark Plesko, mark.plesko@cosylab.com COSYLAB

Tel.: +386 41 934550

Web: www.cosylab.com

