Lattice Design in Particle Accelerators

Bernhard Holzer, CERN

Lattice Design: „... how to build a storage ring"

0.) Geometry of the Ring

High energy accelerators \rightarrow circular machines somewhere in the lattice we need a number of dipole magnets, that are bending the design orbit to a closed ring

$$
\text { centrifugal force } \longleftrightarrow \text { Lorentz force }
$$

$$
\rightarrow B^{*} \rho=p / e
$$

Example:
heavy ion storage ring, 8 dipole magnets of equal bending strength

The angle swept out in one revolution must be 2π, so

$$
\alpha=\frac{\int B d l}{B^{*} \rho}=2 \pi \quad \rightarrow \int B d l=2 \pi * \frac{p}{q}
$$

Nota bene: $\quad \frac{\Delta B}{B} \approx 10^{-4} \quad$ is usually required $!!$

7000 GeV Proton storage ring dipole magnets $\mathrm{N}=1232$

$$
\begin{aligned}
l & =15 \mathrm{~m} \\
\mathrm{q} & =+1 \mathrm{e}
\end{aligned}
$$

$$
\int B d l \approx N l B=2 \pi p / e
$$

$$
B \approx \frac{2 \pi 700010^{9} \boldsymbol{e} \boldsymbol{V}}{123215 \mathrm{~m} 310^{8} \frac{\boldsymbol{m}}{\boldsymbol{s}} \boldsymbol{e}}=8.3 \text { Tesla }
$$

1.) Focusing Forces: Single Element Matrices

Single particle trajectory inside a lattice element is always (?) a part of a harmonic oscillation

$$
\binom{x}{x^{\prime}}_{f}=M *\binom{x}{x^{\prime}}_{i}
$$

Hor. focusing Quadrupole Magnet

$$
\begin{aligned}
& M_{Q F}=\left(\begin{array}{cc}
\cos (\sqrt{K} * l) & \frac{1}{\sqrt{K}} \sin (\sqrt{K} * l) \\
-\sqrt{K} \sin (\sqrt{K} * l) & \cos (\sqrt{K} * l)
\end{array}\right) \\
& M_{Q D}=\left(\begin{array}{cc}
\cosh (\sqrt{K} * l) & \frac{1}{\sqrt{K}} \sinh (\sqrt{K} * l) \\
\sqrt{K} \sinh (\sqrt{K} * l) & \cosh (\sqrt{K} * l)
\end{array}\right)
\end{aligned}
$$

Hor. defocusing Quadrupole Magnet

$M_{\text {lattice }}=M_{Q F 1} * M_{D 1} * M_{Q D} * M_{D 1} * M_{Q F 2} \cdots$

2.) Transfer Matrix \mathbf{M}... as a function of the optics parameters

$$
M=\left(\begin{array}{cc}
\sqrt{\frac{\beta_{s}}{\beta_{0}}}\left(\cos \psi_{s}+\alpha_{0} \sin \psi_{s}\right) & \sqrt{\beta_{s} \beta_{0}} \sin \psi_{s} \\
\frac{\left(\alpha_{0}-\alpha_{s}\right) \cos \psi_{s}-\left(1+\alpha_{0} \alpha_{s}\right) \sin \psi_{s}}{\sqrt{\beta_{s} \beta_{0}}} & \sqrt{\frac{\beta_{0}}{\beta s}}\left(\cos \psi_{s}-\alpha_{s} \sin \psi_{s}\right)
\end{array}\right)
$$

* we can calculate the single particle trajectories between two locations in the ring, if we know the $\alpha \boldsymbol{\beta} \gamma$ at these positions.
* and nothing but the $\alpha \boldsymbol{\beta} \gamma$ at these positions.

3.) Periodic Lattices

$\boldsymbol{M}(\boldsymbol{s})=\left(\begin{array}{cc}\cos \psi_{\text {turn }}+\boldsymbol{\alpha}_{s} \sin \psi_{\text {turn }} & \boldsymbol{\beta}_{s} \sin \psi_{\text {turn }} \\ -\gamma_{s} \sin \psi_{\text {turn }} & \cos \psi_{\text {turn }}-\boldsymbol{\alpha}_{s} \sin \psi_{\text {turn }}\end{array}\right) \quad \psi_{\text {turn }}=\int_{s}^{s+L} \frac{d s}{\beta(s)} \quad \begin{gathered}\psi_{\text {turn }}=\text { phase advance } \\ \text { per period }\end{gathered}$

Tune: Phase advance per turn in units of 2π

$$
Q=\frac{1}{2 \pi} \oint \frac{d s}{\beta(s)}
$$

4.) Transformation of $\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}$

focusing lens
dipole magnet
defocusing lens
$\left(\begin{array}{l}\beta \\ \alpha \\ \gamma\end{array}\right)_{s 2}=\left(\begin{array}{ccc}m_{11}^{2} & -2 m_{11} m_{12} & m_{12}^{2} \\ -m_{11} m_{21} & m_{12} m_{21}+m_{22} m_{11} & -m_{12} m_{22} \\ m_{12}^{2} & -2 m_{22} m_{21} & m_{22}^{2}\end{array}\right) *\left(\begin{array}{l}\beta \\ \alpha \\ \gamma\end{array}\right)_{s 1}$

Relation between the two desriptions single particle trajectory
($\mathbf{x}, \mathbf{x}^{\prime}$), ($\left.\mathbf{y}, \mathbf{y}^{\prime}\right)$
particle ensemble, called the beam α, β, γ

... and just as any harmonic pendulum

Most simple example: drift space

$$
M_{d r i f i}=\left(\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

particle coordinates

$$
\binom{x}{x^{\prime}}_{l}=\left(\begin{array}{ll}
1 & l \\
0 & 1
\end{array}\right) *\binom{x}{x^{\prime}}_{0}
$$

$$
\rightarrow \quad \begin{aligned}
& x(l)=x_{0}+l * x_{0}^{\prime} \\
& x^{\prime}(l)=x_{0}^{\prime}
\end{aligned}
$$

transformation of twiss parameters:

$$
\left(\begin{array}{l}
\beta \\
\alpha \\
\gamma
\end{array}\right)_{l}=\left(\begin{array}{ccc}
1 & -2 l & l^{2} \\
0 & 1 & -l \\
0 & 0 & 1
\end{array}\right) *\left(\begin{array}{l}
\beta \\
\alpha \\
\gamma
\end{array}\right)_{0}
$$

$$
\beta(s)=\beta_{0}-2 l * \alpha_{0}+l^{2} * \gamma_{0}
$$

Stability ...?

$$
\operatorname{trace}(M)=1+1=2
$$

\rightarrow A periodic solution doesn't exist in a lattice built exclusively out of drift spaces.

HEP storage ring lattice

Arc: regular (periodic) magnet structure: bending magnets \rightarrow define the energy of the ring main focusing \& tune control, chromaticity correction, multipoles for higher order corrections

Straight sections: drift spaces for injection, dispersion suppressors, low beta insertions, RF cavities, etc.... ... and the high energy experiments if they cannot be avoided

5.) The FoDo-Lattice

A magnet structure consisting of focusing and defocusing quadrupole lenses in alternating order with nothing in between. (Nothing = elements that can be neglected on first sight: drift, bending magnets, RF structures ... and especially experiments...)

Periodic Solution of a FoDo Cell

$N r$	Type	Length m	Strength 1/m2	$\begin{gathered} \boldsymbol{\beta}_{x} \\ m \end{gathered}$	α_{x}	$\begin{gathered} \varphi_{x} \\ 1 / 2 \pi \end{gathered}$	$\begin{gathered} \boldsymbol{\beta}_{z} \\ m \end{gathered}$	α_{z}	$\begin{gathered} \varphi_{z} \\ 1 / 2 \pi \end{gathered}$
0	IP	0,000	0,000	11,611	0,000	0,000	5,295	0,000	0,000
1	QFH	0,250	-0,541	11,228	1,514	0,004	5,488	-0,781	0,007
2	QD	3,251	0,541	5,488	-0,781	0,070	11,228	1,514	0,066
3	QFH	6,002	-0,541	11,611	0,000	0,125	5,295	0,000	0,125
4	IP	6,002	0,000	11,611	0,000	0,125	5,295	0,000	0,125

$Q X=\quad 0,125 \quad Q Z=\quad 0,125$
$0.125 * 2 \pi=45^{0}$

Can we understand what the optics code is doing?
matrices

$$
M_{Q F}=\left(\begin{array}{cc}
\cos \left(\sqrt{K} * l_{q}\right) & \frac{1}{\sqrt{K}} \sin \left(\sqrt{K} * l_{q}\right) \\
-\sqrt{K} \sin \left(\sqrt{K} * l_{q}\right) & \cos \left(\sqrt{K} * l_{q}\right)
\end{array}\right),
$$

$$
M_{D r i f t}=\left(\begin{array}{cc}
1 & l \\
0 & 1_{d}
\end{array}\right)
$$

strength and length of the FoDo elements

$$
\begin{aligned}
& K=+/-0.54102 \mathrm{~m}^{-2} \\
& l q=0.5 \mathrm{~m} \\
& l d=2.5 \mathrm{~m}
\end{aligned}
$$

The matrix for the complete cell is obtained by multiplication of the element matrices

$$
M_{F o D o}=M_{q f h} * M_{l d} * M_{q d} * M_{l d} * M_{q f h}
$$

Putting the numbers in and multiplying out ...

$$
M_{\text {FoDo }}=\left(\begin{array}{cc}
0.707 & 8.206 \\
-0.061 & 0.707
\end{array}\right)
$$

The transfer matrix for 1 period gives us all the information that we need !
1.) is the motion stable?

$$
\operatorname{trace}\left(M_{\text {FoDo }}\right)=1.415 \rightarrow
$$

2.) Phase advance per cell

$$
\begin{aligned}
& \cos \psi_{\text {cell }}=\frac{1}{2} \operatorname{trace}(M)=0.707 \\
& \psi_{\text {cell }}=\cos ^{-1}\left(\frac{1}{2} \operatorname{trace}(M)\right)=45
\end{aligned}
$$

3.) hor $\boldsymbol{\beta}$-function

$$
\beta=\frac{m_{12}}{\sin \psi_{\text {cell }}}=\underline{\underline{11.611 \mathrm{~m}}}
$$

4.) hor $\boldsymbol{\alpha}$-function

$$
\alpha=\frac{m_{11}-\cos \psi_{\text {cell }}}{\sin \psi_{\text {cell }}}=0
$$

6.) FoDo in thin lens approximation

Can we do a bit easier?

Matrix of a focusing quadrupole magnet:

If the focal length f is much larger than the length of the quadrupole magnet,

the transfer matrix can be approximated by

$$
M=\left(\begin{array}{cc}
1 & 0 \\
1 / f & 1
\end{array}\right)
$$

$$
M_{\text {FoDo }}=\left(\begin{array}{cc}
1-\frac{2 l_{D}^{2}}{\tilde{f}^{2}} & 2 l_{D}\left(1+\frac{l_{D}}{\tilde{f}}\right) \\
2\left(\frac{l_{D}^{2}}{\tilde{f}^{3}}-\frac{l_{D}}{\tilde{f}^{2}}\right) & 1-2 \frac{l_{D}^{2}}{\tilde{f}^{2}}
\end{array}\right)
$$

Now we know, that the phase advance is related to the transfer matrix by

$$
\cos \psi_{\operatorname{codl}}=1-2 \sin ^{2} \frac{\psi_{\mathrm{cif}}}{2}=\frac{1}{2} \operatorname{trace}(M)=1-\frac{2 l^{2}}{f^{2}}
$$

$$
\sin \left(\psi_{\text {cell }} / 2\right)=\frac{L_{\text {cell }}}{4 f}
$$

Example:
45-degree Cell

$$
L_{C e l l}=l_{Q F}+l_{D}+l_{Q D}+l_{D}=0.5 m+2.5 m+0.5 m+2.5 m=6 m
$$

$$
1 / f=k * l_{Q}=0.5 m * 0.541 m^{-2}=0.27 m^{-1}
$$

$$
\begin{aligned}
\sin \left(\psi_{\text {cell }} / 2\right) & =\frac{L_{\text {cell }}}{4 f}=0.405 \\
& \rightarrow \quad \psi_{\text {cell }}=47.8^{\circ} \\
& \rightarrow \quad \beta=11.4 \mathrm{~m}
\end{aligned}
$$

Remember:

Exact calculation yields:

$$
\begin{aligned}
& \rightarrow \quad \psi_{\text {cell }}=45^{\circ} \\
& \rightarrow \quad \beta=11.6 \mathrm{~m}
\end{aligned}
$$

Stability in a FoDo structure

$$
M_{F o D o}=\left(\begin{array}{cc}
1-\frac{2 l_{D}^{2}}{\tilde{f}^{2}} & 2 l_{D}\left(1+\frac{l_{D}}{\tilde{f}}\right) \\
2\left(\frac{l_{D}^{2}}{\tilde{f}^{3}}-\frac{l_{D}}{\tilde{f}^{2}}\right) & 1-2 \frac{l_{D}^{2}}{\tilde{f}^{2}}
\end{array}\right)
$$

Stability requires:

$$
\mid \text { Trace }(\boldsymbol{M}) \mid<2
$$

SPS Lattice

$$
\mid \text { Trace }(\boldsymbol{M})\left|=\left|2-\frac{4 l_{d}^{2}}{\tilde{\boldsymbol{f}}^{2}}\right|<2\right.
$$

$$
\rightarrow f>\frac{L_{\text {cell }}}{4}
$$

For stability the focal length has to be larger than a quarter of the cell length
... don't focus to strong!

Transformation Matrix in Terms of the Twiss Parameters

Transfer Matrix for half a FoDo cell (magnet parameters):
$M_{\text {halfeell }}=\left(\begin{array}{cc}1-l_{D} / \tilde{\boldsymbol{f}} & l_{D} \\ -l_{D} / \tilde{\boldsymbol{f}}^{2} & 1+l_{D} / \tilde{\boldsymbol{f}}\end{array}\right)$

Transfer Matrix (Twiss parameters):
$M_{1 \rightarrow 2}=\left(\begin{array}{cc}\sqrt{\frac{\boldsymbol{\beta}_{2}}{\beta_{1}}}\left(\cos \psi_{12}+\alpha_{1} \sin \psi_{12}\right) & \sqrt{\boldsymbol{\beta}_{1} \boldsymbol{\beta}_{2}} \sin \psi_{12} \\ \frac{\left(\alpha_{1}-\boldsymbol{\alpha}_{2}\right) \cos \psi_{12}-\left(1+\boldsymbol{\alpha}_{1} \alpha_{2}\right) \sin \psi_{12}}{\sqrt{\boldsymbol{\beta}_{1} \boldsymbol{\beta}_{2}}} & \sqrt{\frac{\boldsymbol{\beta}_{1}}{\boldsymbol{\beta}_{2}}}\left(\cos \psi_{12}-\boldsymbol{\alpha}_{2} \sin \psi_{12}\right)\end{array}\right)$

In the middle of a foc (defoc) quadrupole of the FoDo we allways have $\alpha=0$, and the half cell will lead us from $\beta_{\text {max }}$ to $\beta_{\text {min }}$

$$
M=\left(\begin{array}{ll}
\sqrt{\frac{\vee}{\hat{\beta}}} \cos \frac{\psi_{\text {cell }}}{2} & \sqrt{\stackrel{\rightharpoonup}{\beta} \hat{\beta}} \sin \frac{\psi_{\text {cell }}}{2} \\
\frac{-1}{\sqrt{\hat{\beta} \breve{\beta}}} \sin \frac{\psi_{\text {cell }}}{2} & \sqrt{\frac{\hat{\beta}}{\frac{\beta}{\beta}}} \cos \frac{\psi_{\text {cell }}}{2}
\end{array}\right)
$$

7.) scaling of Twiss parameters

Solving for $\boldsymbol{\beta}_{\text {max }}$ and $\boldsymbol{\beta}_{\text {min }}$ and remembering that $\ldots . . \sin \frac{\psi_{\text {cell }}}{2}=\frac{l_{d}}{\tilde{f}}=\frac{L}{4 f}$

The maximum and minimum values of the β-function are solely determined by the phase advance and the length of the cell.

Longer cells lead to larger β
typical shape of a proton
bunch in a FoDo Cell

8.) Beam dimension:

Optimisation of the FoDo Phase advance:

In both planes a gaussian particle distribution is assumed, given by the beam emittance $\boldsymbol{\varepsilon}$ and the $\boldsymbol{\beta}$-function

$$
\sigma \sqrt{\not t}
$$

In general proton beams are „round" in the sense that

$$
\varepsilon_{x} \approx \varepsilon_{y}
$$

So for highest aperture we have to minimise the $\boldsymbol{\beta}$-functionin both planes:
search for the phase advance μ that results in a minimum of the sum of $\quad r^{2}=\varepsilon_{x} \beta_{x}+\varepsilon_{y} \beta_{y}$ the beta's

Electrons are different

electron beams are usually flat, $\varepsilon_{y} \approx 2-10 \% \varepsilon_{x}$
\rightarrow optimise only $\beta_{\text {hor }}$

$$
\frac{d}{d \psi_{\text {cel }}}(\hat{\beta})=\frac{d}{d \psi_{\text {cell }}} \frac{L\left(1+\sin \frac{\psi_{\text {cell }}}{2}\right)}{\sin \psi_{\text {cell }}}=0 \quad \rightarrow \quad \psi_{\text {cell }}=76^{\circ}
$$

red curve: $\boldsymbol{\beta}_{\text {max }}$ blue curve: $\beta_{\text {min }}$ as a function of the phase advance ψ

9.) Dispersion:

problem of momentum „error" in dipole magnets:
in case of non-vanishing momentum error we get an inhomogeneous differentail equation

$$
\Delta p / p \neq 0 \quad \rightarrow \quad x^{\prime \prime}+x\left(\frac{1}{\rho^{2}}-k\right)=\frac{\Delta p}{p} \cdot \frac{1}{\rho}
$$

general solution:

$$
x(s)=x_{h}(s)+x_{i}(s) \quad \begin{aligned}
& \text { where the two parts } \boldsymbol{x}_{\boldsymbol{h}} \text { and } x_{i} \text { describe } \\
& \text { the solution of the hom. and inhom. equation }
\end{aligned}\left\{\begin{array}{l}
x_{h}^{\prime \prime}(s)+K(s) \cdot x_{h}(s)=0 \\
x_{i}^{\prime \prime}(s)+K(s) \cdot x_{i}(s)=\frac{1}{\rho} \cdot \frac{\Delta p}{p}
\end{array}\right.
$$

normalising with respect to $\Delta p / p$ we get the so-called dispersion function

$$
\begin{aligned}
& D(s)=\frac{x_{i}(s)}{\Delta p / p} \rightarrow x(s)=x_{\beta}(s)+D(s) \cdot \frac{\Delta p}{p} \\
& \left(\begin{array}{c}
x \\
x^{\prime} \\
\Delta p / p
\end{array}\right)_{s}=\left(\begin{array}{lll}
C & S & D \\
C^{\prime} & S^{\prime} & D^{\prime} \\
0 & 0 & 1
\end{array}\right) *\left(\begin{array}{c}
x \\
x^{\prime} \\
\Delta p / p
\end{array}\right)_{0}
\end{aligned}
$$

D and $D^{`}$ describe the disp[ersive properties of the lattice element (i.e. the magnet) and depend on it's bending and focusing properties.

Dispersion:

"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO."
... and so what ... ?

Dispersion function $D(s)$

* is that special orbit, an ideal particle would have for $\Delta \mathrm{p} / \mathrm{p}=1$
* the orbit of any particle is the sum of the well known x_{β} and the dispersion
* as $\mathrm{D}(\mathrm{s})$ is just another orbit it will be subject to the focusing properties of the lattice

e.g. matrix for a quadrupole lens:
$M_{f o c}=\left(\begin{array}{cc}\cos (\sqrt{|K|} s & \frac{1}{\sqrt{|K|}} \sin (\sqrt{|K|} s \\ -\sqrt{|K|} \sin (\sqrt{|K|} & \cos (\sqrt{|K|} s\end{array}\right)=\left(\begin{array}{cc}C & S \\ C^{\prime} & S^{\prime}\end{array}\right)$

Calculate D, \mathbf{D}^{\prime}

$$
D(s)=S(s) \int_{s 0}^{s 1} \frac{1}{\rho} C(\tilde{s}) d \tilde{s}-C(s) \int_{s 0}^{s 1} \frac{1}{\rho} S(\tilde{s}) d \tilde{s}
$$

So we get the complete matrix including the dispersion terms D, D^{\prime}

$$
M_{\text {haffCell }}=\left(\begin{array}{ccc}
C & S & D \\
C^{\prime} & S^{\prime} & D^{\prime} \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1-\frac{\ell}{\tilde{f}} & \ell & \frac{\ell^{2}}{2 \rho} \\
\frac{-\ell}{\tilde{f}^{2}} & 1+\frac{\ell}{\tilde{f}} & \frac{\ell}{\rho}\left(1+\frac{\ell}{2 \tilde{f}}\right) \\
0 & 0 & 1
\end{array}\right)
$$

boundary conditions for the transfer in a FoDo from the center of the foc. to the center of the defoc. quadrupole

$$
\left(\begin{array}{c}
v \\
D \\
0 \\
1
\end{array}\right)=M_{1 / 2} *\left(\begin{array}{l}
\hat{D} \\
0 \\
1
\end{array}\right) \longrightarrow\left(\begin{array}{c}
\hat{D}=\frac{1^{2}}{\rho} * \frac{\left(1+\frac{1}{2} \sin \frac{\psi_{\text {cell }}}{2}\right)}{\sin ^{2} \frac{\psi_{\text {cel }}}{2}} \\
\hat{D}=\frac{1^{2}}{\rho} * \frac{\left(1-\frac{1}{2} \sin \frac{\psi_{\text {cell }}}{2}\right)}{\sin ^{2} \frac{\psi_{\text {cell }}}{2}}
\end{array}\right.
$$

Nota bene:
! small dispersion needs strong focusing
\rightarrow large phase advance
$!!\leftrightarrow$ there is an optimum phase for small β
!!! ...do you remember the stability criterion?
$1 / 2$ trace $=\cos \psi \leftrightarrow \psi<180^{\circ}$
!!!! ... life is not easy

10.) Dispersion Suppressor Schemes

Bernhard Holzer: Lattice Design, CERN Acc. School: CERN-2006-02

Example

$$
x_{\beta}=1 . . .2 \mathrm{~mm}
$$

$$
\begin{aligned}
& D(s) \approx 1 \ldots 2 m \\
& \Delta p / p \approx 1 \cdot 10^{-3}
\end{aligned}
$$

Amplitude of Orbit oscillation contribution due to Dispersion \approx beam size

FoDo cell including the dispersive effect of dipole
1.) The straight forward one: Dispersion Suppressor Quadrupole Scheme use additional quadrupole lenses to match the optical parameters ... including the $D(s), D^{\prime}(s)$ terms

* Dispersion suppressed by 2 quadrupole lenses,
* β and α restored to the values of the periodic solution by 4 additional quadrupoles

$$
\left.\begin{array}{l}
D(s), \quad D^{\prime}(s) \\
\beta_{x}(s), \alpha_{x}(s) \\
\beta_{y}(s), \alpha_{y}(s)
\end{array}\right\} \rightarrow
$$

6 additional quadrupole
 lenses required

Dispersion Suppressor Quadrupole Scheme

Advantage:
! easy,
! flexible: it works for any phase advance per cell
! does not change the geometry of the storage ring,
! can be used to match between different lattice structures (i.e. phase advances)

The Missìng Bend Dispersion Suppressor

... turn it the other way round: Start at the IP with $\quad D(s)=\hat{D}, \quad D^{\prime}(s)=0$
and create dispersion - using dipoles - in such a way, that it fits exactly the conditions at the centre of the first regular quadrupoles:
conditions for the (missing) dipole fields:

$$
D(s)=S(s) \int_{s 0}^{s 1} \frac{1}{\rho} C(\tilde{s}) d \tilde{s}-C(s) \int_{s 0}^{s 1} \frac{1}{\rho} S(\tilde{s}) d \tilde{s}
$$

at the end of the arc: add m cells without dipoles followed by n regular arc cells.

$$
\begin{aligned}
& \sin \frac{n \Phi_{C}}{2}=\frac{1}{2}, k=0,2 \ldots \text { or } \\
& \sin \frac{n \Phi_{C}}{2}=\frac{-1}{2}, k=1,3 \ldots
\end{aligned}
$$

$$
\text { and } \quad \frac{2 m+n}{2} \Phi_{C}=(2 k+1) \frac{\pi}{2}
$$

$\therefore \quad m=$ number of cells without dipoles followed by n. regular arc cells.

Example:
phase advance in the arc $\Phi_{C}=60^{\circ}$ number of suppr. cells $\quad m=1$ number of regular cells $n=1$

The Half Bend Dispersion Suppressor

condition for vanishing dispersion: $\quad 2 * \boldsymbol{\delta}_{\text {supr }} * \sin ^{2}\left(\frac{\boldsymbol{n} \Phi_{\boldsymbol{c}}}{2}\right)=\boldsymbol{\delta}_{\text {arc }}$
so if we require

$$
\boldsymbol{\delta}_{\text {supr }}=\frac{1}{2} * \boldsymbol{\delta}_{\text {arc }}
$$

we get

$$
\sin ^{2}\left(\frac{n \Phi_{c}}{2}\right)=1
$$

and equivalent for $\boldsymbol{D}^{\boldsymbol{}}=\mathbf{0} \quad \sin \left(\boldsymbol{n} \Phi_{\boldsymbol{c}}\right)=\mathbf{0}$
$\boldsymbol{n} \Phi_{c}=\boldsymbol{k}^{*} \boldsymbol{\pi}, \quad \boldsymbol{k}=1,3, \ldots$

in the n suppressor cells the phase advance has to accumulate to a odd multiple of π
strength of suppressor dipoles is half as strong as that of arc dipoles, $\delta_{\text {suppr }}=1 / 2 \delta_{\text {arc }}$

Example: phase advance in the arc

$$
\Phi_{C}=90^{\circ}
$$

number of suppr. cells $n=2$

11.) Lattice Design:

Luminosity \& Mini-Beta-Insertions

$$
R=L * \Sigma_{\text {react }}
$$

$$
L=\frac{1}{4 \pi e^{2} f_{0} n_{b}} * \frac{\boldsymbol{I}_{p 1} \boldsymbol{I}_{p 2}}{\sigma_{x} \sigma_{y}}
$$

Example: Luminosity run at LHC

$$
\begin{array}{ll}
\boldsymbol{\beta}_{x, y}=0.55 \mathrm{~m} & \boldsymbol{f}_{0}=11.245 \mathrm{kHz} \\
\boldsymbol{\varepsilon}_{x, y}=5 * 10^{-10} \mathrm{rad} \mathrm{~m} & \boldsymbol{n}_{b}=2808 \\
\sigma_{x, y}=17 \mu \boldsymbol{m} & \\
\boldsymbol{I}_{p}=584 \boldsymbol{m A} &
\end{array}
$$

production rate of events is determined by the cross section $\Sigma_{\text {react }}$ and the luminosity that is given by the design of the accelerator

Lattice Design: Mini-Beta-Insertions

Twiss parameters in a drift:

$$
\left(\begin{array}{l}
\beta \\
\alpha \\
\gamma
\end{array}\right)_{S}=\left(\begin{array}{ccc}
C^{2} & -2 S C & S^{2} \\
-C C^{\prime} & S C^{\prime}+S^{\prime} C & -S S^{\prime} \\
C^{\prime 2} & -2 S^{\prime} C^{\prime} & S^{\prime 2}
\end{array}\right) *\left(\begin{array}{l}
\beta \\
\alpha \\
\gamma
\end{array}\right)_{0} \quad \text { with } \quad M=\left(\begin{array}{cc}
C & S \\
C^{\prime} & S^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
1 & s \\
0 & 1
\end{array}\right)
$$

$$
\begin{aligned}
& \beta(s)=\beta_{0}-2 \alpha_{0} s+\gamma_{0} s^{2} \\
& \alpha(s)=\alpha_{0}-\gamma_{0} s \\
& \gamma(s)=\gamma_{0}
\end{aligned}
$$

"0" refers to the position of the last lattice element ,"" refers to the position in the drift
starting in the middle of a symmetric drift
 where $\alpha=0$ we get

Nota bene:
1.) this is very bad !!!

$$
\beta(s)=\beta_{0}+\frac{s^{2}}{\beta_{0}}
$$

2.) this is a direct consequence of the conservation of phase space density (... in our words: $\varepsilon=$ const) ... and there is no way out.
3.) Thank you, Mr. Liouville !!!

Joseph Liouville 1809-1882
... clearly there is another problem !!!
But: ... unfortunately ... in general high energy detectors that are installed in that drift spaces are a little bit bigger than a few centimeters ...

Mini- β Insertions: some guide lines

* calculate the periodic solution in the arc
* introduce the drift space needed for the insertion device (detector ...)
* put a quadrupole doublet (triplet ?) as close as possible
* introduce additional quadrupole lenses to match the beam parameters to the values at the beginning of the arc structure
parameters to be optimised \& matched to the periodic solution:

$$
\begin{array}{ll}
\alpha_{x}, \beta_{x} & D_{x}, D_{x}^{\prime} \\
\alpha_{y}, \beta_{y} & Q_{x}, Q_{y}
\end{array}
$$

-> 8 individually powered quad magnets are needed to match the insertion (... at least)

dublet mini-beta-structure (HERA-p)

triplet mini-beta-structure (LHC-IP1)

Mini- β Insertions: Phase advance

By definition the phase advance is given by:

$$
\Phi(s)=\int \frac{1}{\beta(s)} d s
$$

Now in a mini β insertion: $\beta(s)=\beta_{0}\left(1+\frac{s^{2}}{\beta_{0}^{2}}\right)$

$$
\rightarrow \Phi(s)=\frac{1}{\beta_{0}} \int_{0}^{L} \frac{1}{1+s^{2} / \beta_{0}^{2}} d s=\arctan \frac{L}{\beta_{0}}
$$

Consider the drift spaces on both sides of the IP: the phase advance of a mini β insertion is approximately π, in other words: the tune will increase by half an integer.

Mini- β Insertions: Betafunctions

A mini- β insertion is always a kind of special symmetrkd drift space. \rightarrow greetings from Liouville

$$
\begin{aligned}
& \alpha^{*}=0 \\
& \gamma^{*}=\frac{1+\alpha^{2}}{\beta}=\frac{1}{\beta^{*}} \\
& \sigma^{\prime *}=\sqrt{\frac{\varepsilon}{\beta^{*}}}
\end{aligned}
$$

The LHC Mini-Beta-Insertions

mini $\boldsymbol{\beta}$ optics

High Light of the HEP-Year

ATLAS event display: Higgs => two electrons \& two muons

The High light of the year

production rate of events is determined by the cross section $\Sigma_{\text {react }}$

 and a parameter L that is given by the design of the accelerator:... the luminosity

$$
R=L * \Sigma_{\text {react }} \quad \approx 10^{-12} b \cdot 25 \frac{1}{10^{-15} b}=\text { some } 1000 H
$$

remember:
$1 \mathrm{~b}=10^{-24} \mathrm{~cm}^{2}$

The luminosity is a storage ring quality parameter and depends on beam size (β !!) and stored curre

$$
L=\frac{1}{4 \pi e^{2} f_{0} \mathrm{~b}} * \frac{I_{1} * I_{2}}{\sigma_{x}^{*} * \sigma_{y}^{*}}
$$

Are there any problems?

sure there are...

* large β values at the doublet quadrupoles \rightarrow large contribution to
chromaticity Q^{\prime}... and no local correction

$$
Q^{\prime}=\frac{-1}{4 \pi} \oint K(s) \beta(s) d s
$$

* aperture of mini β quadrupoles
limit the luminosity
beam envelope at the first mini β quadrupole lens in the HERA proton storage ring

* field quality and magnet stability most critical at the high β sections effect of a quad error:

$$
\Delta Q=\int_{s 0}^{s 0+l} \frac{\Delta K(s) \beta(s) d s}{4 \pi}
$$

\rightarrow keep distance „s" to the first mini β quadrupole as small as possible

12.) Luminosity Limits

Beam-Beam-Effect

the colliding bunches influence each other
=> change the focusing properties of the ring !!
for LHC a strong non-linear defoc. effect

$$
L=\frac{1}{4 \pi}\left(f_{r \aleph_{0} N_{p}} n_{b}\right)\left(\frac{\sqrt{N_{p}}}{\varepsilon_{n} \beta^{*}}\right) \cdot F \cdot W
$$

most simple case:
linear beam beam tune shift

$$
\begin{gathered}
\Delta Q_{x}=\frac{\beta_{x}^{*} * r_{p} * N_{p}}{2 \pi \gamma_{p}\left(\sigma_{x}+\sigma_{y}\right) * \sigma_{x}} \\
\Rightarrow \text { puts a limit to } \mathbf{N}_{\mathbf{p}}
\end{gathered}
$$

observed particle losses when beams are brought into collision

Luminosity Limits

Geometric Loss Factor F

$$
L=\frac{1}{4 \pi}\left(f_{r e v} N_{p} n_{b}\right)\binom{\gamma N_{b}}{\frac{\beta^{*}}{*}} \cdot F \cdot W
$$

crossing angle unavoidable: $\phi / 2=142.5 \mu \mathrm{rad}$

$$
F=\frac{1}{\sqrt{1+2 \frac{\sigma_{s}^{2}}{\sigma_{1 x}^{2}+\sigma_{2 x}^{2}} \tan ^{2} \frac{\phi}{2}}} \quad \Leftrightarrow \text { FLHC }=0.836
$$

bunches have to be separated at ar parasitic encounter Remember: 25ns $\Leftrightarrow \Delta s=3.75 \mathrm{~m}$

W factor due to beam offset
... can be avoided by careful tuning used for luminosity leveling (IP2,8)

$$
\boldsymbol{W}=\boldsymbol{e}^{-\frac{\left(d_{2}-d_{1}\right)^{2}}{2\left(\sigma_{x 1}^{2}+\sigma_{x 2}^{2}\right)}}
$$

13.) The LHC Luminosity Upgrade

Establish $\boldsymbol{\beta}^{*}=\mathbf{1 0 - 1 5} \mathrm{cm}$ at IP1 \& 5 to reach a "virtual luminosity" of $\mathrm{L}=2 \boldsymbol{2} \mathbf{1 0}^{35}$
limits to overcome:
matching quadrupoles -> ATS
aperture in mini β quadrupoles $->\mathrm{Nb}_{3} \mathbf{S n}$ lumi-loss due to crossing angle -> crab crossing

HL-LHC Upgrade Optics

The LHC Luminosity Upgrade

find a smooth and adiabatic transition without (too many) hysteresis problems, increase the crossing angle simultaneously to avoid beam beam encounters increase the sextupoles to keep chromaticity compensated at any time

Optics Transition Injection -
Pre-Squeeze needs TLC optimisation

gradient change for the squeeze without creating hysteresis problems

The LHC Luminosity Upgrade

Crossing Angles \& Apertures

crossing angle bump for the case:
$\beta=15 \mathrm{~cm}, \varepsilon=3.0 \mu \mathrm{~m},+/-10 \sigma$ with location of parasitic 25ns encounters

Luminosity \& Loss Factor

$$
\begin{aligned}
\mathcal{L}= & \frac{N_{1} N_{2} f n_{b}}{2 \pi \sqrt{\sigma_{1 x}^{2}+\sigma_{2 x}^{2}} \sqrt{\sigma_{1 y}^{2}+\sigma_{2 y}^{2}}} * F \\
& F=\frac{1}{\sqrt{1+\left(\frac{\sigma_{s}}{\sigma_{x}} \operatorname{tgn} \frac{\phi}{2}\right)^{2}}} \approx \frac{1}{\sqrt{1+\left(\frac{\sigma_{s} \phi}{\sigma_{x}}\right)^{2}}} \\
& \approx 0.33
\end{aligned}
$$

$$
\text { crossing angle } \phi=590 \mu \mathrm{rad}
$$

The LHC Luminosity Upgrade Crab Crossing

transv. deflecting cavity "crab-cavity"

A luminosity limit of its own: "Pile-up problem"

leveling via closed Orbit Bumps
2 vertices
20 vertices non-linear beam beam effect !!
leveling via β^{*}
-> proof of principle, tricky procedure feed down -> orbit effect

18.) Bibliography

1.) Klaus Wille, Physics of Particle Accelerators and Synchrotron Radiation Facilicties, Teubner, Stuttgart 1992
(Oxford Univ. Press)
2.) P. Bryant, The Principles of Circular Accelerators and Storage Rings, (Cambridge University Press)
3.) H. Wiedemann, Particle Accelerator Physics
(Springer-Verlag, 1993)
4.) A. Chao, M. Tigner, Handbook of Accelerator Physics and Engineering (World Scientific 1998)
5.) Peter Schmüser: Basic Course on Accelerator Optics, CERN Acc. School: $5^{\text {th }}$ general acc. phys. course CERN 94-01
6.) Bernhard Holzer: Lattice Design, CERN Acc. School: Interm. Acc.phys course, CERN 2006-002 and CERN 2014- ???
7.) Frank Hinterberger: Physik der Teilchenbeschleuniger, (Springer Verlag 1997)
9.) Mathew Sands: The Physics of $e+e$-Storage Rings, SLAC report 121, 1970
10.) D. Edwards, M. Syphers: An Introduction to the Physics of Particle Accelerators, SSC Lab 1990

Appendix I: Dispersion:
 Solution of the Inhomogenious Equation of Motion

the dispersion function is given by

$$
D(s)=S(s) * \int \frac{1}{\rho(\widetilde{s})} C(\widetilde{s}) d \widetilde{s}-C(s) * \int \frac{1}{\rho(\widetilde{s})} S(\widetilde{s}) d \widetilde{s}
$$

$$
\begin{aligned}
& \operatorname{proof:} \quad D^{\prime}(s)=S^{\prime}(s) * \int \frac{1}{\rho(\widetilde{s})} C(\widetilde{s}) d \widetilde{s}+S(s) * \frac{C(\widetilde{s})}{\rho(\widetilde{s})}-C^{\prime}(s)^{*} \int \frac{1}{\rho(\widetilde{s})} S(\widetilde{s}) d \widetilde{s}-C(s) \frac{S(\widetilde{s})}{\rho(\widetilde{s})} \\
& D^{\prime}(s)=S^{\prime}(s) * \int \frac{C}{\rho} d \widetilde{s}-C^{\prime}(s) * \int \frac{S}{\rho} d \widetilde{s} \\
& D^{\prime \prime}(s)=S^{\prime \prime}(s) * \int \frac{C}{\rho} d \widetilde{s}+S^{\prime} \frac{C}{\rho}-C^{\prime \prime}(s) * \int \frac{S}{\rho} d \widetilde{s}-C^{\prime} \frac{S}{\rho} \\
& \left.D^{\prime \prime}(s)=S^{\prime \prime}(s)^{*} \int \frac{C}{\rho} d \widetilde{s}-C^{\prime \prime}(s)^{*}+\frac{1}{\rho}\right)(\underbrace{\left.C S^{\prime}-S C^{\prime}\right)} \\
& =\operatorname{det}(M)=1 \\
& D^{\prime \prime}(s)=S^{\prime \prime}(s) * \int \frac{C}{\rho} d \widetilde{s}-C^{\prime \prime}(s) * \int \frac{S}{\rho} d \widetilde{s}+\frac{1}{\rho}
\end{aligned}
$$

now the principal trajectories S and C fulfill the homogeneous equation

$$
S^{\prime \prime}(s)=-K^{*} * \quad, \quad C^{\prime \prime}(s)=-K^{*} C
$$

and so we get: $\quad D^{\prime \prime}(s)=-K * S(s) * \int \frac{C}{\rho} d \widetilde{s}+K * C(s) * \int \frac{S}{\rho} d \widetilde{s}+\frac{1}{\rho}$

$$
\begin{aligned}
& D^{\prime \prime}(s)=-K^{*} \boldsymbol{D}(s)+\frac{1}{\rho} \\
& D^{\prime \prime}(s)+K * D(s)=\frac{1}{\rho}
\end{aligned}
$$

qed.

Appendix II: Dispersion Suppressors

... the calculation of the half bend scheme in full detail (for purists only)
1.) the lattice is split into 3 parts: (Gallia divisa est in partes tres)

* periodic solution of the arc periodic β, periodic dispersion D
* section of the dispersion suppressor periodic β, dispersion vanishes
* FoDo cells without dispersion periodic $\beta, \mathrm{D}=\mathrm{D}^{\prime}=0$

2.) calculate the dispersion D in the periodic part of the lattice
transfer matrix of a periodic cell:

$$
M_{0 \rightarrow S}=\left(\begin{array}{cc}
\sqrt{\frac{\beta_{S}}{\beta_{0}}}\left(\cos \phi+\alpha_{0} \sin \phi\right) & \sqrt{\beta_{S} \beta_{0}} \sin \phi \\
\frac{\left(\alpha_{0}-\alpha_{S}\right) \cos \phi-\left(1+\alpha_{0} \alpha_{S}\right) \sin \phi}{\sqrt{\beta_{S} \beta_{0}}} & \sqrt{\frac{\beta_{S}}{\beta_{0}}}\left(\cos \phi-\alpha_{S} \sin \phi\right)
\end{array}\right)
$$

for the transformation from one symmetriy point to the next (i.e. one cell) we have: $\Phi_{\mathrm{C}}=$ phase advance of the cell, $\alpha=0$ at a symmetry point. The index " c " refers to the periodic solution of one cell.

$$
M_{C e l l}=\left(\begin{array}{ccc}
C & S & D \\
C^{\prime} & S^{\prime} & D^{\prime} \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
\cos \Phi_{C} & \beta_{C} \sin \Phi_{C} & D(l) \\
\frac{-1}{\beta_{C}} \sin \Phi_{C} & \cos \Phi_{C} & D^{\prime}(l) \\
0 & 0 & 1
\end{array}\right)
$$

The matrix elements D and D` are given by the C and S elements in the usual way:

$$
\begin{aligned}
& D(l)=S(l) * \int_{0}^{l} \frac{1}{\rho(\tilde{s})} C(\tilde{s}) d \tilde{s}-C(l) * \int_{0}^{l} \frac{1}{\rho(\tilde{s})} S(\tilde{s}) d \tilde{s} \\
& D^{\prime}(l)=S^{\prime}(l) * \int_{0}^{l} \frac{1}{\rho(\tilde{s})} C(\tilde{s}) d \tilde{s}-C^{\prime}(l) * \int_{0}^{l} \frac{1}{\rho(\tilde{s})} S(\tilde{s}) d \tilde{s}
\end{aligned}
$$

here the values $\mathrm{C}(l)$ and $\mathrm{S}(l)$ refer to the symmetry point of the cell (middle of the quadrupole) and the integral is to be taken over the dipole magnet where $\rho \neq 0$. For $\rho=$ const the integral over $C(s)$ and $S(s)$ is approximated by the values in the middle of the dipole magnet.

Transformation of $\mathrm{C}(\mathrm{s})$ from the symmetry point to the center of the dipole:

$$
C_{m}=\sqrt{\frac{\beta_{m}}{\beta_{C}}} \cos \Delta \Phi=\sqrt{\frac{\beta_{m}}{\beta_{C}}} \cos \left(\frac{\Phi_{C}}{2} \pm \varphi_{m}\right) \quad S_{m}=\beta_{m} \beta_{C} \sin \left(\frac{\Phi_{C}}{2} \pm \varphi_{m}\right)
$$

where β_{C} is the periodic β function at the beginning and end of the cell, β_{m} its value at the middle of the dipole and φ_{m} the phase advance from the quadrupole lens to the dipole center.

Now we can solve the intergal for D and D':

$$
\begin{gathered}
D(l)=S(l) * \int_{0}^{l} \frac{1}{\rho(\tilde{s})} C(\tilde{s}) d \tilde{s}-C(l) * \int_{0}^{l} \frac{1}{\rho(\tilde{s})} S(\tilde{s}) d \tilde{s} \\
D(l)=\beta_{C} \sin \Phi_{C} * \frac{L}{\rho} * \sqrt{\frac{\beta_{m}}{\beta_{C}}} * \cos \left(\frac{\Phi_{C}}{2} \pm \varphi_{m}\right)-\cos \Phi_{C} * \frac{L}{\rho} \sqrt{\beta_{m} \beta_{C}} * \sin \left(\frac{\Phi_{C}}{2} \pm \varphi_{m}\right)
\end{gathered}
$$

$$
\begin{aligned}
D(l)=\delta \sqrt{\beta_{m} \beta_{C}}\left\{\operatorname { s i n } \Phi _ { C } \left[\cos \left(\frac{\Phi_{C}}{2}+\varphi_{m}\right)\right.\right. & \left.+\cos \left(\frac{\Phi_{C}}{2}-\varphi_{m}\right)\right]- \\
& \left.-\cos \Phi_{C}\left[\sin \left(\frac{\Phi_{C}}{2}+\varphi_{m}\right)+\sin \left(\frac{\Phi_{C}}{2}-\varphi_{m}\right)\right]\right\}
\end{aligned}
$$

I have put $\delta=L / \rho$ for the strength of the dipole
remember the relations $\quad \cos x+\cos y=2 \cos \frac{x+y}{2} * \cos \frac{x-y}{2}$

$$
\sin x+\sin y=2 \sin \frac{x+y}{2} * \cos \frac{x-y}{2}
$$

$D(l)=\delta \sqrt{\beta_{m} \beta_{C}}\left\{\sin \Phi_{C} * 2 \cos \frac{\Phi_{C}}{2} * \cos \varphi_{m}-\cos \Phi_{C} * 2 \sin \frac{\Phi_{C}}{2} * \cos \varphi_{m}\right\}$
$D(l)=2 \delta \sqrt{\beta_{m} \beta_{C}} * \cos \varphi_{m}\left\{\sin \Phi_{C} * \cos \frac{\Phi_{C}}{2} *-\cos \Phi_{C} * \sin \frac{\Phi_{C}}{2}\right\}$
remember: $\quad \sin 2 x=2 \sin x * \cos x$

$$
\cos 2 x=\cos ^{2} x-\sin ^{2} x
$$

$D(l)=2 \delta \sqrt{\beta_{m} \beta_{C}} * \cos \varphi_{m}\left\{2 \sin \frac{\Phi_{C}}{2} * \cos ^{2} \frac{\Phi_{C}}{2}-\left(\cos ^{2} \frac{\Phi_{C}}{2}-\sin ^{2} \frac{\Phi_{C}}{2}\right) * \sin \frac{\Phi_{C}}{2}\right\}$

$$
\begin{aligned}
& D(l)=2 \delta \sqrt{\beta_{m} \beta_{C}} * \cos \varphi_{m} * \sin \frac{\Phi_{C}}{2}\left\{2 \cos ^{2} \frac{\Phi_{C}}{2}-\cos ^{2} \frac{\Phi_{C}}{2}+\sin ^{2} \frac{\Phi_{C}}{2}\right\} \\
& D(l)=2 \delta \sqrt{\beta_{m} \beta_{C}} * \cos \varphi_{m} * \sin \frac{\Phi_{C}}{2}
\end{aligned}
$$

in full analogy one derives the expression for $D^{\text {‘ }}$

$$
D^{\prime}(l)=2 \delta \sqrt{\beta_{m} / \beta_{c}} * \cos \varphi_{m} * \cos \frac{\Phi_{c}}{2}
$$

As we refer the expression for D and $D^{‘}$ to a periodic struture, namly a FoDo cell we require periodicity conditons:

$$
\left(\begin{array}{c}
D_{C} \\
D_{C}^{\prime} \\
1
\end{array}\right)=M_{C} *\left(\begin{array}{c}
D_{C} \\
D_{C}^{\prime} \\
1
\end{array}\right)
$$

and by symmetry: $\quad D^{\prime}{ }_{C}=0$

With these boundary conditions the Dispersion in the FoDo is determined:

$$
D_{C} * \cos \Phi_{C}+\delta \sqrt{\beta_{m} \beta_{C}} * \cos \varphi_{m} * 2 \sin \frac{\Phi_{C}}{2}=D_{C}
$$

$$
\begin{equation*}
D_{C}=\delta \sqrt{\beta_{m} \beta_{C}} * \cos \varphi_{m} / \sin \frac{\Phi_{C}}{2} \tag{Al}
\end{equation*}
$$

This is the value of the periodic dispersion in the cell evaluated at the position of the dipole magnets.

3.) Calculate the dispersion in the suppressor part:

We will now move to the second part of the dispersion suppressor: The section where ... starting from $D=D^{〔}=0$ the dispesion is generated \ldots or turning it around where the Dispersion of the arc is reduced to zero.
The goal will be to generate the dispersion in this section in a way that the values of the periodic cell that have been calculated above are obtained.

The relation for D , generated in a cell still holds in the same way:

$$
D(l)=S(l) * \int_{0}^{l} \frac{1}{\rho(\tilde{s})} C(\tilde{s}) d \tilde{s}-C(l) * \int_{0}^{l} \frac{1}{\rho(\tilde{s})} S(\tilde{s}) d \tilde{s}
$$

as the dispersion is generated in a number of n cells the matrix for these n cells is

$$
M_{n}=M_{C}^{n}=\left(\begin{array}{ccc}
\cos n \Phi_{C} & \beta_{C} \sin n \Phi_{C} & D_{n} \\
\frac{-1}{\beta_{C}} \sin n \Phi_{C} & \cos n \Phi_{C} & D_{n}^{\prime} \\
0 & 0 & 1
\end{array}\right)
$$

$D_{n}=\beta_{C} \sin n \Phi_{C} * \delta_{\text {sup } r} * \sum_{i=1}^{n} \cos \left(i \Phi_{C}-\frac{1}{2} \Phi_{C} \pm \varphi_{m}\right) * \sqrt{\frac{\beta_{m}}{\beta_{C}}}-$

$$
-\cos n \Phi_{C} * \delta_{\text {sup } r} * \sum_{i=1}^{n} \sqrt{\beta_{m} \beta_{C}} * \sin \left(i \Phi_{C}-\frac{1}{2} \Phi_{C} \pm \varphi_{m}\right)
$$

$D_{n}=\sqrt{\beta_{m} \beta_{C}} * \sin n \Phi_{C} * \delta_{\text {sup } r} * \sum_{i=1}^{n} \cos \left((2 i-1) \frac{\Phi_{C}}{2} \pm \varphi_{m}\right)-\sqrt{\beta_{m} \beta_{C}} * \delta_{\text {sup }} * \cos n \Phi_{C} \sum_{i=1}^{n} \sin \left((2 i-1) \frac{\Phi_{C}}{2} \pm \varphi_{m}\right)$

$$
\text { remember: } \quad \sin x+\sin y=2 \sin \frac{x+y}{2} * \cos \frac{x-y}{2} \quad \cos x+\cos y=2 \cos \frac{x+y}{2} * \cos \frac{x-y}{2}
$$

$$
D_{n}=\delta_{\text {sup } r} * \sqrt{\beta_{m} \beta_{C}} * \sin n \Phi_{C} * \sum_{i=1}^{n} \cos \left((2 i-1) \frac{\Phi_{C}}{2}\right) * 2 \cos \varphi_{m}-
$$

$$
-\delta_{\text {sup } r} * \sqrt{\beta_{m} \beta_{C}} * \cos n \Phi_{C} \sum_{i=1}^{n} \sin \left((2 i-1) \frac{\Phi_{C}}{2}\right) * 2 \cos \varphi_{m}
$$

$$
\begin{aligned}
& D_{n}=2 \delta_{\text {sup } r} * \sqrt{\beta_{m} \beta_{C}} * \cos \varphi_{m}\left\{\sum_{i=1}^{n} \cos \left((2 i-1) \frac{\Phi_{C}}{2}\right) * \sin n \Phi_{C}-\sum_{i=1}^{n} \sin \left((2 i-1) \frac{\Phi_{C}}{2}\right) * \cos n \Phi_{C}\right\} \\
& D_{n}=2 \delta_{\text {sup } r} * \sqrt{\beta_{m} \beta_{C}} * \cos \varphi_{m}\left\{\sin n \Phi_{C}\left\{\frac{\sin \frac{n \Phi_{C}}{2} * \cos \frac{n \Phi_{C}}{2}}{\sin \frac{\Phi_{C}}{2}}\right\}-\cos n \Phi_{C} *\left\{\frac{\sin \frac{n \Phi_{C}}{2} * \sin \frac{n \Phi_{C}}{2}}{\sin \frac{\Phi_{C}}{2}}\right\}\right\} \\
& D_{n}=\frac{2 \delta_{\text {sup } r} * \sqrt{\beta_{m} \beta_{C}} * \cos \varphi_{m}}{\sin \frac{\Phi_{C}}{2}}\left\{\sin n \Phi_{C} * \sin \frac{n \Phi_{C}}{2} * \cos \frac{n \Phi_{C}}{2}-\cos n \Phi_{C} * \sin ^{2} \frac{n \Phi_{C}}{2}\right\}
\end{aligned}
$$

set for more convenience $\mathrm{x}=\mathrm{n} \Phi_{\mathrm{C}} / 2$

$$
\begin{aligned}
& D_{n}=\frac{2 \delta_{\text {sup } r} * \sqrt{\beta_{m} \beta_{C}} * \cos \varphi_{m}}{\sin \frac{\Phi_{C}}{2}}\left\{\sin 2 x * \sin x * \cos x-\cos 2 x * \sin ^{2} x\right\} \\
& D_{n}=\frac{2 \delta_{\text {sup } r} * \sqrt{\beta_{m} \beta_{C}} * \cos \varphi_{m}}{\sin \frac{\Phi_{C}}{2}}\left\{2 \sin x \cos x * \cos x \sin x-\left(\cos ^{2} x-\sin ^{2} x\right) \sin ^{2} x\right\}
\end{aligned}
$$

$$
\begin{equation*}
D_{n}=\frac{2 \delta_{\text {sup } r} * \sqrt{\beta_{m} \beta_{C}} * \cos \varphi_{m}}{\sin \frac{\Phi_{C}}{2}} * \sin ^{2} \frac{n \Phi_{C}}{2} \tag{A2}
\end{equation*}
$$

and in similar calculations:

$$
D_{n}^{\prime}=\frac{2 \delta_{\text {sup } r} * \sqrt{\beta_{m} \beta_{C}} * \cos \varphi_{m}}{\sin \frac{\Phi_{C}}{2}} * \sin n \Phi_{C}
$$

This expression gives the dispersion generated in a certain number of n cells as a function of the dipole kick δ in these cells.
At the end of the dispersion generating section the value obtained for $D(s)$ and $D^{\prime}(s)$ has to be equal to the value of the periodic solution:
\rightarrow equating (A1) and (A2) gives the conditions for the matching of the periodic dispersion in the arc to the values $\mathrm{D}=\mathrm{D}=0$ afte the suppressor.

$$
D_{n}=\frac{2 \delta_{\mathrm{sup} r} * \sqrt{\beta_{m} \beta_{C}} * \cos \varphi_{m}}{\sin \frac{\Phi_{C}}{2}} * \sin ^{2} \frac{n \Phi_{C}}{2}=\delta_{\text {arc }} \sqrt{\beta_{m} \beta_{C}} * \frac{\cos \varphi_{m}}{\sin \frac{\Phi_{C}}{2}}
$$

$$
\left.\begin{array}{l}
\rightarrow 2 \delta_{\text {sup } r} \sin ^{2}\left(\frac{n \Phi_{C}}{2}\right)=\delta_{\text {arc }} \\
\rightarrow \sin \left(n \Phi_{C}\right)=0
\end{array}\right\} \delta_{\text {sup } r}=\frac{1}{2} \delta_{\text {arc }}
$$

and at the same time the phase advance in the arc cell has to obey the relation:

$$
n \Phi_{C}=k^{*} \pi, k=1,3, \ldots
$$

