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Lattice Design in Particle Accelerators 
Bernhard Holzer, CERN 

Lattice Design:  „… how to build a storage ring“ 



 centrifugal force          Lorentz force 

p = momentum of the particle, 

ρ = curvature radius 

Bρ= beam rigidity 

* /B p e 

Example:  

heavy ion storage ring, 8 dipole  

magnets of equal bending strength  

0.) Geometry of the Ring  

High energy accelerators  circular machines 

somewhere in the lattice we need a number of dipole magnets,                

that are bending the design orbit to a closed ring  
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The angle swept out in one revolution  

must be 2π, so 

 … for a full 

circle 

is usually required !! Nota bene:  



7000 GeV  Proton storage ring 

     dipole magnets  N = 1232 

                                 l = 15 m 

                                q = +1 e 
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Example LHC: 
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Hor. focusing Quadrupole Magnet 

Hor. defocusing Quadrupole Magnet 

Drift space 

1 1 1 2* * * * ...lattice QF D QD D QFM M M M M M

Single particle trajectory 

inside a lattice element is always (?)  

a part of a harmonic oscillation  

1.) Focusing Forces: Single Element Matrices 
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* we can calculate the single particle trajectories between two locations in the ring,  

   if we know the α β γ at these positions.  

* and nothing but the α β γ at these positions.  

*     …  ! 

2.) Transfer Matrix M ... as a function of the optics parameters 

ψ turn = phase advance  

per period 
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Tune: Phase advance per turn in units of 2π  
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3.) Periodic Lattices 
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4.) Transformation of α, β, γ 
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Relation between the two desriptions 

      single particle trajectory  

 (x, x’), (y,y’) 

      particle ensemble, called the beam 

 α, β, γ 



… just as Big Ben  

… and just as any harmonic pendulum 



Most simple example:   drift space 
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particle coordinates 

transformation of twiss parameters: 
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Stability ...? 

( ) 1 1 2trace M   

A periodic solution doesn‘t  

    exist in a lattice built exclusively  

    out of drift spaces. 
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HEP storage ring lattice  

      Arc: regular (periodic) magnet structure:  

   bending magnets  define the energy of the ring 

   main focusing & tune control, chromaticity correction, 

   multipoles for higher order corrections 

 

      Straight sections:  drift spaces for injection, dispersion suppressors,   

   low beta insertions, RF cavities, etc.... 

  ... and the high energy experiments if they cannot be avoided  



 4521250 *.

Nr Type Length Strength β
x
 α

x
 φ

x
 β

z
 α

z
 φ

z
 

    m 1/m2 m   1/2π m   1/2π 

0 IP 0,000 0,000 11,611 0,000 0,000 5,295 0,000 0,000 

1 QFH 0,250 -0,541 11,228 1,514 0,004 5,488 -0,781 0,007 

2 QD 3,251 0,541 5,488 -0,781 0,070 11,228 1,514 0,066 

3 QFH 6,002 -0,541 11,611 0,000 0,125 5,295 0,000 0,125 

4 IP 6,002 0,000 11,611 0,000 0,125 5,295 0,000 0,125 

QX= 0,125 QZ= 0,125 

Periodic Solution of a FoDo Cell 

0.125 * 2π = 450     

 5.) The FoDo-Lattice 

A magnet structure consisting of focusing and defocusing quadrupole lenses in alternating order  

with nothing in between. (Nothing = elements that can be neglected on first sight: drift, bending magnets,  

 RF structures ... and especially experiments...) 
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strength and length of the FoDo elements          K  = +/- 0.54102 m-2 

     lq = 0.5 m 

     ld = 2.5 m 

* * * *FoDo qfh ld qd ld qfhM M M M M M

0.707 8.206

0.061 0.707
FoDoM

 
  

 

Putting the numbers in and multiplying out ... 

The matrix for the complete cell is obtained by multiplication of the element matrices 

matrices 

Can we understand what the optics code is doing ?  



The transfer matrix for 1 period gives us all the information that we need ! 

1.) is the motion stable? ( ) 1.415FoDotrace M  

2.) Phase advance per cell 

3.) hor β-function  

<  2  

4.) hor α-function  
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Matrix of a focusing quadrupole magnet: 
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Can we do a bit easier ? 

6.) FoDo in thin lens approximation 

If the focal length f is much larger than the length of the quadrupole magnet, 
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the transfer matrix can be approximated by  

but keeping its foc. properties 

lD

LL

2

2

2 2

3 2 2

2
1 2 (1 )

2( ) 1 2

D D
D

D D D

l l
l

f f
M

l l l

f f f

 
  

 
 

   
 

FoDo 



Now we know, that the phase advance is related to the transfer matrix by 



sin(cell /2) 
Lcell

4 f

Example:  

            45-degree Cell 

LCell    =    lQF + lD + lQD +lD      =   0.5m+2.5m+0.5m+2.5m = 6m 

1/f   =   k*lQ   =   0.5m*0.541 m-2 = 0.27 m-1 

Remember: 

Exact calculation yields: 



sin(cell /2) 
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4 f
 0.405



 cell  47.8o

  11.4 m



 cell  45o

  11.6 m



Stability in a FoDo structure 
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Stability requires: 

SPS Lattice 
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For stability the focal length  

has to be larger than a quarter  

of the cell length  

... don’t focus to strong ! 



Transformation Matrix in Terms of the Twiss Parameters  
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Transfer Matrix for half a FoDo cell (magnet parameters): 

In the middle of a foc (defoc) quadrupole of the  

FoDo we allways have α = 0, and the half cell  

will lead us from βmax to βmin  
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Transfer Matrix (Twiss parameters): 



Solving for βmax and βmin and remembering that …. 

The maximum and minimum values of  

the β-function are solely determined by  

the phase advance and the length of the cell. 
  

Longer cells lead to larger β 

 

Z X Y( )

typical shape of a proton  

bunch in a FoDo Cell 
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7.) scaling of Twiss parameters 



8.) Beam dimension:  

                             Optimisation of the FoDo Phase advance: 

In both planes a gaussian particle distribution is assumed, given by the beam  

emittance ε and the β-function 

 

In general proton beams are „round“ in the sense that 

x y 

So for highest aperture we have to minimise the β-functionin both planes: 

2

x x y yr     search for the phase advance μ that results in a minimum of the sum of 

the beta’s  
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electron beams are usually flat,   εy ≈ 2 - 10 % εx   

    optimise only βhor 

red curve: βmax  

blue curve: βmin 

as a function of the phase advance ψ 

Electrons are different 
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problem of momentum „error“ in dipole magnets: 

 

in case of non-vanishing momentum error we get an  

inhomogeneous differentail equation 
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9.) Dispersion: 

general solution: 
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where the two parts xh and xi describe  

the solution of the hom. and inhom. equation 

( )
( ) i

p
p

x s
D s


 ( ) ( ) ( )

p
x s x s D s

p



  

normalising with respect to Δp/p we get the so-called dispersion function  
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D and D‘ describe the disp[ersive properties of  

the lattice element (i.e. the magnet) and depend  

on it‘s bending and focusing properties. 



Dispersion: 
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Closed orbit for Δp/p > 0 
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... and so what ... ? 

 

Dispersion function D(s)  

* is that special orbit, an ideal      

   particle would have  for Δp/p = 1 

* the orbit of any particle is the   

   sum of the well known xβ  and    

   the dispersion 

* as D(s) is just another orbit it    

   will be subject to the focusing    

   properties of the lattice  

 

e.g. matrix for a quadrupole lens: 
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Calculate D, D´ 
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(proof: see appendix) 



2

2

1
2

' ' ' 1 (1 )
2

0 0 1
0 0 1

halfCell

f
C S D

M C S D
f f f





 
 

  
  

     
   
   

  
 

So we get the complete matrix including the dispersion terms D, D´  

0 30 60 90 120 150 180
0

2

4

6

8

10
10

0.5

D max ( )

D min ( )

1801 

Nota bene: 

 

!  small dispersion needs strong focusing 

    → large phase advance  

!! ↔ there is an optimum phase for small β 

!!!  ...do you remember the stability criterion? 

     ½ trace = cos ψ  ↔ ψ < 180° 

!!!! … life is not easy 

boundary conditions for the transfer  

in a FoDo from the center of the foc. 

 to the center of the defoc. quadrupole 
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10.) Dispersion Suppressor Schemes 

 

 

Bernhard Holzer: Lattice Design, CERN Acc. School: 
CERN-2006-02 

FoDo cell including the dispersive effect of dipoles 
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Example  

LHC  
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Amplitude of Orbit oscillation  

        contribution due to Dispersion ≈ beam size 

         Dispersion must vanish at the collision point  

1.) The straight forward one:  Dispersion Suppressor Quadrupole Scheme 
   use additional quadrupole lenses to match the optical parameters ... 

 including the D(s), D´(s) terms  

* Dispersion suppressed  

   by 2 quadrupole lenses, 
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6 additional quadrupole  

lenses required 

 

* β and α restored to the values of  the periodic solution  

   by 4 additional  quadrupoles 



Advantage:   

 

 !  easy,  

 ! flexible: it works for any phase  

     advance per cell  

 ! does not change the geometry  

     of the storage ring,  

 ! can be used to match between different lattice  

     structures (i.e. phase advances) 

Disadvantage: 

 

  ! additional power supplies needed 

                                (→ expensive) 

  ! requires stronger quadrupoles  

  ! due to higher β values: more aperture  

                                required 

Dispersion Suppressor 

Quadrupole Scheme 
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 The Missing Bend Dispersion Suppressor  

conditions for the (missing) dipole fields: 

Example:  
 

phase advance in the arc ΦC = 60° 

number of suppr. cells     m = 1  

number of regular cells   n = 1 

m = number of cells without dipoles  

followed by n regular arc cells. 

D



… turn it the other way round:   Start at the IP with  
 

 

and create dispersion – using dipoles - in such a way, that it fits exactly the 

conditions at the centre of the first regular quadrupoles:   

ˆ( ) , ( ) 0D s D D s 

1 1
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1 1
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s s
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at the end of the arc: add m cells without  

dipoles followed by n regular arc cells. 

and 



 The Half Bend Dispersion Suppressor  

arc
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2
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condition for vanishing dispersion: 

so if we require arcsupr *
2

1
 

and equivalent for D‘=0 

we get 

...,3,1,*  kkn c 

strength of suppressor dipoles is half as  

strong as that of arc dipoles, δsuppr = 1/2 δarc 

in the n suppressor cells the phase advance 

has to accumulate to a odd multiple of π  

Example:  phase advance in the arc  

                 ΦC = 90° 

  number of suppr. cells n = 2  
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R  L*react

production rate of events is determined by the 

 cross section Σreact and the luminosity  that is 

given by the design of the accelerator 

 11.) Lattice Design:  

  Luminosity & Mini-Beta-Insertions 



Lattice Design: Mini-Beta-Insertions 

Twiss parameters in a drift: 
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with 

„0“ refers to the position of the last  

       lattice element 

„s“ refers to the position in the drift 
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starting in the middle of a symmetric drift  

where α = 0 we get  

2
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Nota bene:  

    1.) this is very bad !!! 

    2.) this is a direct consequence of the  

         conservation of phase space density 

         (... in our words: ε = const) … and  

         there is no way out. 

    3.) Thank you, Mr. Liouville !!!  
Joseph Liouville 

1809-1882 



... clearly there is another problem !!! 

Example: Luminosity optics at LHC: β* = 55 cm 

                for smallest βmax we have to limit the overall length   

              and keep the distance “s” as small as possible. 

But: ... unfortunately ... in general  

         high energy detectors that are  

         installed in that drift spaces  

         are a little bit bigger than a few centimeters ... 



  * calculate the periodic solution in the arc 
 

     * introduce the drift space needed for the insertion device (detector ...) 
 

  * put a quadrupole doublet (triplet ?) as close as possible 
 

  * introduce additional quadrupole lenses to match the beam  parameters 

     to the values at the beginning of the arc structure 

 
 

parameters to be optimised & matched to the periodic solution: 
, ,

, ,

x x x x

y y x y
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-> 8 individually powered quad magnets are needed to match  

the insertion ( ... at least) 

Mini-β Insertions: some guide lines  

dublet mini-beta-structure (HERA-p) triplet mini-beta-structure (LHC-IP1) 



Now in a mini β insertion: 

Mini-β Insertions: Phase advance 

By definition the phase advance is given by: 
1
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Consider the drift spaces on both  

sides of the IP:  the phase advance  

of a mini β insertion is  

approximately π,  

in other words: the tune will increase  

by half an integer. 
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Mini-β Insertions: Betafunctions 

A mini-β insertion is always a kind of special symmetric drift space. 

 greetings from Liouville 

at a symmetry point β is just the ratio of beam dimension and beam divergence. 
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The LHC Mini-Beta-Insertions 
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High Light of the HEP-Year  

ATLAS event display: Higgs => two electrons & two muons 





R  L *react 1012b  25
1

1015b
 some1000H

production rate of events is determined by the cross section Σreact 

and a parameter L that is given by the design of the accelerator: 

… the luminosity  



react 1pb



L dt 25 fb1

The High light of the year 
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The luminosity is a storage ring quality parameter and depends on beam size ( β !! ) and stored current 

remember:  

1b=10-24 cm2 



sure there are... 
 

      * large β values at the doublet quadrupoles  large contribution to     

         chromaticity Q’     … and no local correction 

 

 

  
 

        

       * aperture of mini β quadrupoles 

          limit the luminosity 

* field quality and magnet stability most critical at the high β sections 

  effect of a quad error: 

beam envelope at the first  

mini β quadrupole lens in  

the HERA proton storage ring  

 keep distance „s“ to the first mini β quadrupole as small as possible 
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Are there any problems ? 
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2  p ( x  y)* x

the colliding bunches influence each other   

 => change the focusing properties of the ring !! 

      for LHC a strong non-linear  defoc. effect  

   

most simple case:  

linear beam beam tune shift 

 

 

 
 

=> puts a limit to Np 

Beam-Beam-Effect 

observed  particle losses when beams  

are brought into collision 

12.) Luminosity Limits 
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Luminosity Limits 
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... cannot be avoided 

... ϕ/2 has to increase with decreasing β*  
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W factor due to beam offset   

... can be avoided by careful tuning 

used for luminosity leveling (IP2,8) 
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 F W

Geometric Loss Factor F 

bunches have to be separated at any 

 parasitic encounter 

Remember: 25ns  Δs = 3.75m 

crossing angle unavoidable: ϕ/2 = 142.5 μrad  



13.) The LHC Luminosity Upgrade 

Establish β* =10-15 cm at IP1 & 5 to reach a 

“virtual luminosity” of  L = 2*1035 
 

limits to overcome:  

matching quadrupoles -> ATS 

aperture in mini β quadrupoles ->Nb3Sn 

lumi-loss due to crossing angle -> crab crossing 

  




^

 20 km!!!



5.5m injection optics 

40cm pre-squeeze optics 

15cm ATS optics 

Standard low-beta-Squeeze 

ATS-

Squeeze 



(s)   *
s2

 *



 

 

 

Optics Transition Injection –  

                     Pre-Squeeze needs TLC optimisation 
 

 The LHC Luminosity Upgrade 

gradient change for the squeeze  

without creating hysteresis problems 

find a smooth and adiabatic transition without (too many) hysteresis problems, 

increase the crossing angle simultaneously to avoid beam beam encounters 

increase the sextupoles to keep chromaticity compensated at any time 



crossing angle bump for the case: 

β=15 cm, ε=3.0μm, +/- 10σ 

with location of parasitic 25ns encounters 

 

 

 

 

 

 

 

 

Crossing Angles & Apertures  

 The LHC Luminosity Upgrade 

Luminosity & Loss Factor 

crossing angle ϕ = 590 μrad 



 

 

 

 

 

 

transv. deflecting cavity 

 “crab-cavity” 

The LHC Luminosity Upgrade 

Crab Crossing 

leveling via closed Orbit Bumps 

non-linear beam beam effect !! 

 

leveling via β*  

 -> proof of principle,  tricky procedure 

 feed down -> orbit effect  

2 vertices 20 vertices 

A luminosity limit of its own: 

“Pile-up problem” 
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Appendix I: Dispersion:  
         Solution of the Inhomogenious Equation of Motion 

the dispersion function is given by  
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now the principal trajectories S and C fulfill the homogeneous equation  
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Appendix II: Dispersion Suppressors 
... the calculation of the half bend scheme in full detail (for purists only) 

1.) the lattice is split into 3 parts: (Gallia divisa est in partes tres)  

 

* periodic solution of the arc                    periodic β, periodic dispersion D 

* section of the dispersion suppressor      periodic β, dispersion vanishes 

* FoDo cells without dispersion             periodic β, D = D´ = 0    



2.) calculate the dispersion D in the periodic part of the lattice 

transfer matrix of a periodic cell: 

0 0

0

0

0 0

00

(cos sin ) sin

( )cos (1 )sin
(cos sin )

S
S

S

S S S
S

S

M


     



      
  

 



 
 

 
  

   
 
 

for the transformation from one symmetriy point to the next (i.e. one cell) we have:  

ΦC = phase advance of the cell, α = 0 at a symmetry point. The index “c” refers to the periodic  

solution of one cell.   

cos sin ( )

1
' ' ' sin cos '( )

0 0 1
0 0 1

C C C

Cell C C

C

D l
C S D

M C S D D l





  
   

         
      

 

0 0

1 1
( ) ( )* ( ) ( )* ( )

( ) ( )

l l

D l S l C s ds C l S s ds
s s 

  

The matrix elements D and D‘ are given by the C and S elements in the usual way: 

0 0

1 1
'( ) '( )* ( ) '( )* ( )

( ) ( )

l l

D l S l C s ds C l S s ds
s s 

  



here the values C(l) and S(l) refer to the symmetry point of the cell (middle of the quadrupole) and the  

integral is to be taken over the dipole magnet where ρ ≠ 0. For ρ = const the integral over C(s) and S(s) is  

approximated by the values in the middle of the dipole magnet.   

Transformation of C(s) from the symmetry point to the center of the dipole:  

cos cos( )
2

m m C
m m

C C
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    sin( )

2

C
m m C mS   


 

where βC is the periodic β function at the beginning and end of the cell, βm its value at the middle of  

the dipole and φm the phase advance from the quadrupole lens to the dipole center. 

 

Now we can solve the intergal for D and D’:  
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remember the relations  cos cos 2cos *cos
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x y x y
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remember:  sin 2 2sin *cosx x x
2 2cos2 cos sinx x x 

2 2 2( ) 2 *cos 2sin *cos (cos sin )*sin
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C C C C C
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I have put δ = L/ρ for the strength of the dipole  
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2
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in full analogy one derives the expression for D‘: 

As we refer the expression for D and D‘ to a periodic struture, namly a FoDo cell we require  

periodicity conditons: 

*
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D D
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and by symmetry: ' 0CD 

With these boundary conditions the Dispersion in the FoDo is determined: 
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This is the value of the periodic dispersion in the cell evaluated at the position of the dipole magnets. 

 
3.) Calculate the dispersion in the suppressor part: 

 

We will now move to the second part of the dispersion suppressor: The section where ... starting  

from D=D‘=0 the dispesion is generated ... or turning it around where the Dispersion of the arc is  

reduced to zero. 

The goal will be to generate the dispersion in this section in a way that the values of the periodic cell  

that have been calculated above are obtained. 
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The relation for D, generated in a cell still holds in the same way: 

(A1) 



sup

1

1
sin * * cos( )*

2

n
m

n C C r C C m

i C

D n i


  


      

as the dispersion is generated in a number of n cells the matrix for these n cells is 
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set for more convenience x = nΦC/2 

sup 2
2 * *cos

sin 2 *sin *cos cos 2 *sin

sin
2

r m C m

n
C

D x x x x x
   

 


sup 2 2 2
2 * *cos

2sin cos *cos sin (cos sin )sin

sin
2

r m C m

n
C

D x x x x x x x
   

  




sup 2
2 * *cos

*sin
2

sin
2

r m C m C
n

C

n
D

    




and in similar calculations:  
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This expression gives the dispersion generated in a certain number of n cells as a function of the dipole  

kick δ in these cells.  

At the end of the dispersion generating section the value obtained for D(s) and D‘(s) has to be equal  

to the value of the periodic solution:  

 

 

equating (A1) and (A2) gives the conditions for the matching of the periodic dispersion in the arc  

    to the values D = D‘= 0 afte the suppressor.   
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and at the same time the phase advance in the arc cell has to obey the relation: 

* , 1,3, ...Cn k k  


