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Content
• Definitions 

• Transverse space dynamics 

• Emittance measurement 

• Interaction of particles with matter 

• Radiation emission by charged particles 

• Sampling of distributions (measurement of profiles)
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Beam profiles

Generic particles distribution i(x, y) )
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Amplitude distribution
Particles distribution in 
phase space:

In normalised space:

Radial density: dN
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Courant-Snyder parameters

T h e p h a s e s p a c e 
ellipse can be defined 
by 4 parameters:

And the equation of 
the ellipse is:
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Phase space dynamics
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Particles transport
In a linear system, like a system composed of drift 
space and quadrupoles, the coordinates of a 
particle in phase space can be transported using a 
simple matrix notation


x1

x

0
1

�
= M1


x0

x

0
0

� 
x2

x

0
2

�
= M2


x1

x

0
1

� 
x3

x

0
3

�
= M3


x2

x

0
2

�


x3

x

0
3

�
= M3M2M1


x0

x

0
0

�
= M0)3


x0

x

0
0

�

MDrift =


1 L
0 1

�
MQuad =


1 0

� 1
f 1

�
=

"
cos(

p
kLQ)

1p
k
sin(

p
kLQ)

�
p
k sin(

p
kLQ) cos(

p
kLQ)

#

8



Twiss parameters transport

If one can transport each point of the phase 
space one can also transport the ellipse and thus 
the Courant-Snyder, a.k.a. Twiss, parameters 
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3 profiles emittance
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Sampling of distributions
• Intercepting methods!

• Scanning wires 

• Wire grids (Harps) 

• Radiative screens 

• Non intercepting methods!

• Synchrotron light 

• Rest gas ionization 

• (Inverse Compton scattering / photo dissociation)
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Interaction of particles with 
matter

• Ionisation!

• Creation of electrons/ions pairs 

• Secondary electrons emission (low energy electrons) 

• Emission of photons (decay of excited states) 

• Elastic and inelastic scattering!

• Dislocations 

• Production of secondary particles (high energy particles) 

• Radiation!

• Cherenkov radiation 

• Bremsstrahlung 

• Optical transition radiation
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Energy deposition
• Energy deposition is probably the most important aspect 

for all intercepting devices 

• Signals are often proportional to the deposited energy 

• Energy deposition can cause damage to the instrument 

• The Bethe-Bloch formula describes energy losses for 
many of our cases 

• The energy lost by the particles is not necessarily 
deposited in the sensor
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Energy deposition - dE/dx
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Secondary emission - SEM
• Linked to ionisation 

• Surface electrons 
receive sufficient energy 
to travel to the surface 
and leave 

• Emission yield depends 
on particles energy, 
material, surface state,  
EM fields, etc.
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Scintillation
• Linked to ionisation 

• Photons are emitted by the de-
excitation of atomic states 
populated by the passage of 
the particle 

• Emission time ns to hours

1MeV e- on 5μm P43 yields ~ 60 ph.
16



Scintillation (2)
• Phosphors have very high light yields, but can only be 

used as thin coating on a rigid support and get damaged 
very quickly 

• Normally used only for very low intensity beams 

• Ceramics, glasses and crystals are a more popular choice 
in high energy accelerators 

• CHROMOX (Al2O3:CrO2, Aluminium Oxide) is a very 
common choice because it is a very robust ceramic  

• YAG (Y3Al5O12) is also a very frequent choice (fast)
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Optical Transition Radiation 
(OTR)

• Radiation is emitted 
when a charged 
particle crosses the 
boundary of different 
dielectric properties 

• Radiation has 
defined angular 
distribution 

• Radiation is radially 
polarised 

• Thickness of radiator 
not important
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Synchrotron radiation
• Charged particles emit 

electromagnetic radiation when 
accelerated 

• Bremsstrahlung: reduction of 
velocity 

• Synchrotron radiation: change of 
direction 

• Synch. rad. from dipole magnet 
emits in a fan 

• Radiation from undulator has 
different properties
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Edge radiation
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Red observers sees longer pulses and narrower 
spectrum. 
Blue observer sees shorter pulses and as a 
consequence broader spectrum (edge radiation).
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Inverse Compton scattering
• A low energy photon (few eV) 

interacts with a high energy 
charged lepton (e-, e+) 

• The photon gets boosted and 
gains energy to the expense 
of the particle 

• Cross section is small, but 
usable for e- and e+, it is very 
small for hadrons (protons)

⌫0
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Photo dissociation 
(H- beams)

Photons from a laser are used to separate one electron from 
the H- ion. This can be facilitated by external electric or 
magnetic fields 
Some of the ions will lose the extra electron and become 
neutral H0 
The different species can be separated by a bending magnet
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Sampling distributions
• One dimension sampling!

• Wire scanners 

• Wire grids 

• Rest gas ionisation monitors 

• Laser Wire Scanner 

• Two dimension sampling!

• Screens and radiators 

• Synchrotron radiation
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Wire scanner

• Scans a thin wire or 
a needle across the 
beam 

• Detects secondary 
emission current or 
high energy 
secondary particles 
(scintillator + PMT)
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Wire scanner

• The position of the wire 
is read by resolver or an 
encoder and sampled 
simultaneously with the 
signal 

• On complex, fast 
mechanisms the error 
on the position can be 
the largest contribution
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Wire scanner
• Secondary emission!

• Good for low energy beams (no high energy secondary) 

• Small signal 

• If the wire becomes too hot it can start to emit thermionic electrons 
spoiling the measurement 

• High energy secondary!

• No problem with wire heating (well...) 

• Strong signal 

• Detection may be non homogeneous leading to distorted profiles
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Wire scanner
• Fast scanners!

• Present limit is around 20 m/s 

• Usually rotational mechanism 

• Acquire profile snapshots during acceleration without need of plateaus 

• Reduce wire heating (short scan time) 

• Slow scanners!

• High wire position accuracy 

• Possibly thinner wires (low accelerations) 

• More reliable mechanisms 

• Long(er) measurement time 

• Tighter intensity limits

27



Wire scanner

CERN “flying wires”

SLAC SLC high 
resolution 3 axis 

scanners 

KEK ATF high 
resolution 3 axis 

scanners 
28



Wire Scanner (SLC)
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SEM Grid (Wire Harp)
• The SE current from each wire or strip is acquired 

independently 
• Complex (=expensive) cabling/electronics 
• Wire spacing down to a few hundreds microns 
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SEM Grid
• Single shot 

measurement 

• Time resolved 
measurement possible 
(up to ~100 MHz) 

• Damage to a single wire 
can make device 
unusable
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SEM Gid
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Ionisation profile monitor
• Beam creates ionisation 

column in rest gas 

• Electric field drifts electrons 
Ions) toward detector 

• Magnetic field guides the 
electron (ions) 

• MCP+phosphor+CCD 
detects electrons (ions) 

• If E is reversed ions can be 
detected instead of electrons 
(less need for B field)
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Ionisation profile monitor
• Image shows a stripe 

• Intensity profile of stripe 
proportional to beam profile 

• Detector measures only 
one plane 

• Transverse drift of electrons 
introduces broadening 
(need intense B field) and 
creates “tails”
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IPM (GSI)
• IPMs allow the continuous 

monitoring of the transverse 
plane 

• Needs a “minimum” of rest gas
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Laser Wire Scanner
• Collide a high power, focused, pulsed laser with an electron beam 

• X-ray or γ-ray are produced by Inverse Compton Scattering 

• Detect the x-ray / γ-ray or the degraded electrons downstream 

• Can also be used on H- beams exploiting the photo neutralization detecting either the 
neutral H atoms or the freed electrons
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Laser Wire Scanner

There is a physical limit on the smallest laser spot size 
and on the distance over which it can remain focused
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Laser Wire Scanner
• On the ATF ring original 

solution 

• Instead of using a 
powerful laser an 
optical cavity surrounds 
the electrons beam 

• The whole table is 
scanned
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Laser Wire Scanner
LWS used at SLC to measure the beam size at the IP

39



Laser Wire Scanner
• High resolution LWS require 

• High power, high quality lasers (mJ, ≤ps, M2~1) 

• Complex focusing systems 

• Precise scanning systems (as an alternative the beam can be moved 
around) 

• The resolution of the laser wire scanners is limited by the minimum waist size 
(of the order of the wavelength) 

• A strongly focused laser beam will have a short waist length (Rayleigh length) 
and is not adapted for small beams with large aspect ratios 

• Other limiting factors are laser stability, vibrations, x-ray detection (if low energy 
x-rays) 
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Scintillating screen
• Particles passing trough the 

screen excite atoms and 
molecules 

• The screen emits photons that 
can be observed with a TV 
camera (CCD, VIDICON etc.) 

• Multiple scattering inside screen 
increases beam divergence 

• Typical screens are Al2O3:CrO2 
1mm thick. Robust and good for 
beam observation, but not for 
precise profile measurements.
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Scintillating screen

Optical setup may introduce deformations (tilted screen) 
Need to perform off line corrections and calibrations

42



Scintillating screen
• Photons created inside the 

screen can escape 

• The image observed is distorted 

• Thickness of the screen should 
be small (compared to beam 
size) 

• Observation at 90˚ is easy to 
use, but very bad for quality, also 
for field depth and aberrations

A is what we would like to observe 
B is what we really obtain
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OTR radiators
• Use backward emission 

• Reflecting properties of radiator 
are important (metal foil or 
metal coating) 

• Use thin foil (few μm) or 
“wafers”, typically Al coated Si 
~300 μm. N passages possible. 

• Angle of radiator depends on 
beam momentum 

• For dense beams use carbon 
foils or SiC wafers
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Optics primer

If 1/γ < D/(2 s) the whole lobe can be collected and the observation angle is equal to the 
specular reflection. 
If 1/γ > D/(2 s) only part of the lobe can be collected and the specular reflection differs 
from the observation angle
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OTR example (DESY)
• Often beams are far from 

Gaussian especially in linacs 

• Camera must be protected 
from radiation requiring 
complex optical lines 

• Filters are needed to avoid 
saturating the camera
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OTR example (KEK)
• Small beams can be very dense 

and damage the radiator. 
!

• Choosing the right material is 
essential.
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Synchrotron radiation

• Radiation inside magnet is constant 

• Radiation at the entrance and exit edge has higher frequency components (shorter 
pulse) “edge radiation” 

• Magnet also useful for separating photons from particles 

• Source normally near entrance or even entrance edge 

• Resolution often limited by diffraction
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E= 2 GeV, λ= 400 nm, ρ= 10 m  
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(240 μm using 1/γ)
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Light sensors
• 1D sensors 

• Photo diode array (up to 50kHz) 

• Linear CCD (same as above) 

• Segmented photomultiplier (Can be fast up to hundreds of MHz) 

• 2D sensors (usually slow 50-100 Hz) 

• image CCD (naturally global shutter) 

• image CMOS (naturally rolling shutter! g.s. can be implemented) 

• CMOS sensors can have very high frame rates hundreds of kHz 

• (Segmented photomultiplier) (Can be fast up to hundreds of MHz)
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Light sensors
• Photomultipliers are radiation resistant (glass and metal) 

• CCD and CMOS are silicon based and thus not very tolerant 
to radiation (max few M Rad) 

• Tube cameras (ex. VIDICON) are radiation hard, but have 
worse resolution and sensitivity (obsolete!) 

• Special fast cameras contain loads of memory and electronics 
and are very sensitive to radiation (and expensive) 

• Sensitivity of image sensors can be increased using image 
intensifiers, but usually at the expense of resolution
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Cameras
• Analog!

• Simple to use (only need 12V and a monitor) 

• Well defined signal format (interchangeable) 

• Digital!

• Often bound to drivers/lib from builder 

• Better S/N 

• No need for a frame grabber (for normal camera) 

• Less expensive to transport signal over long distances
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That’s all folks! 
!

Thank you for your attention


